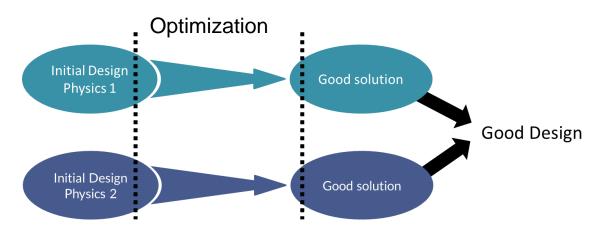

Design Exploration and Cosimulation

From traditional Design Optimization to Multiphysics Design Exploration

Chiastek

Let us start from an example...

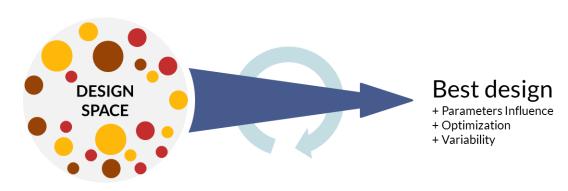
A **power module** provides *electrical* power. It is submitted to *thermal* constraints. Which can damage the *mechanical* properties of the component, and therefore the power *electrical* function.


How can we compute its lifetime according those dependencies?

- Those physics are intimately coupled
- Reliability and performance are related
- Each manufactured power module has a different life
- Multiphysical design problem
 - Design optimization and variability analysis

CHIAS

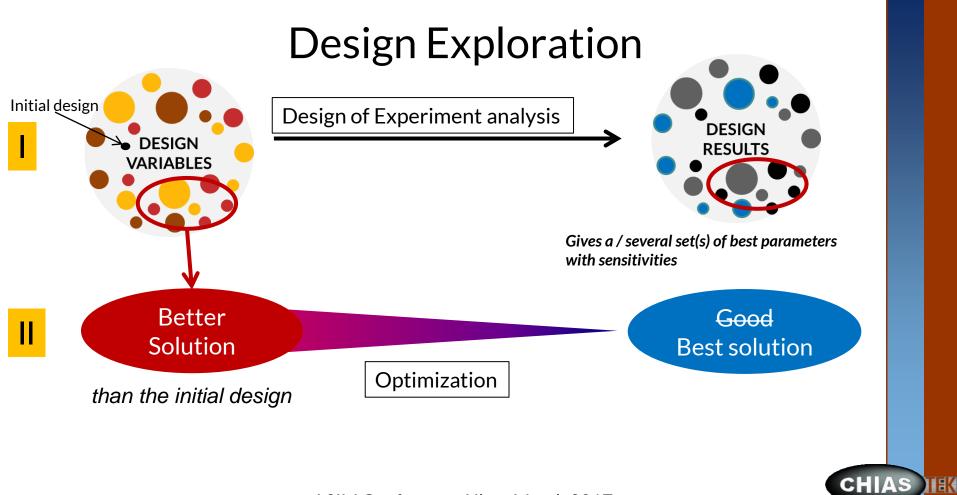
Traditional Design Optimization


- Experts concentrate on their area of expertise from a known solution.
- Efficient approach.
- Take into account multiphysical constraints through textual of static constraints
- Does not take into account other possible design variable combinations

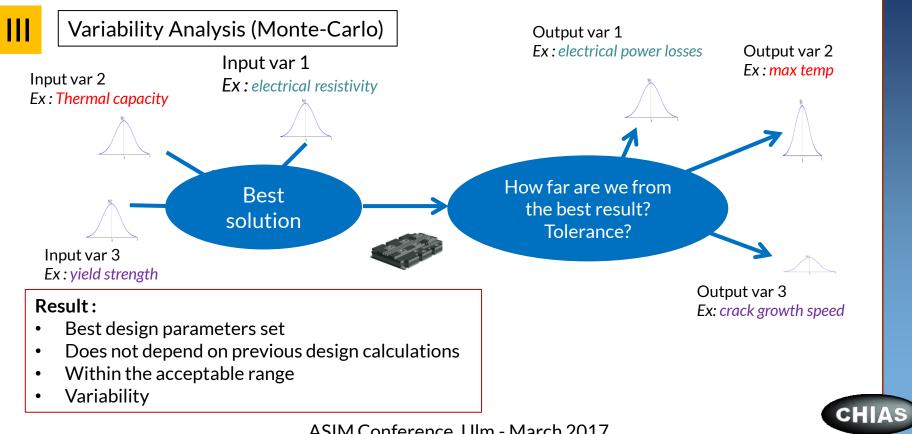
CHIAS

FΚ

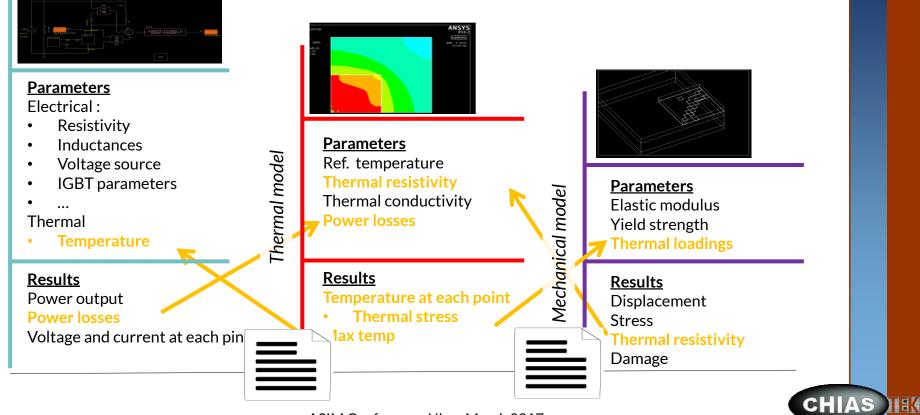
Design Exploration



Takes into account all combinations of parameters to evaluate the outcome on the product performance


In this presentation, **Design Exploration** will include

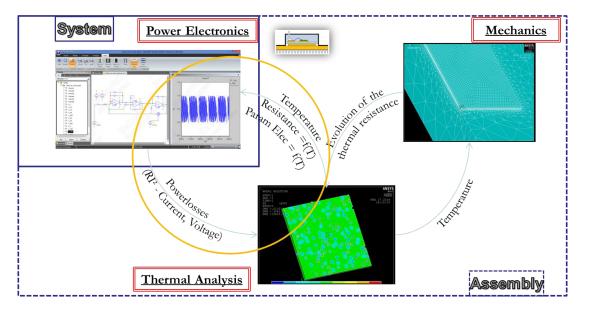
- <u>Design of Experiment</u>: how will a set of parameter influence the performance (e.g. sensitivity analysis)
- <u>Optimization</u> : provided those sensitivities, how can I find the best combination
- <u>Variability Analysis</u>: what happens if my parameters value are variable in a defined range (manufacturing tolerance, performance loss in time...)


Design Exploration

ASIM Conference, Ulm - March 2017

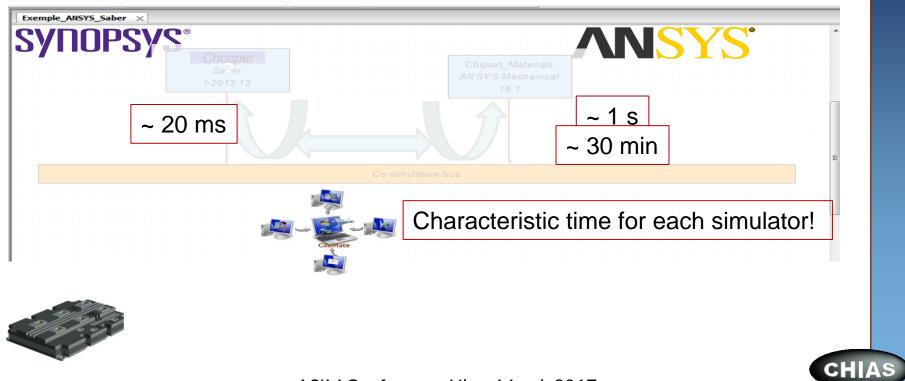
TEK

Multiphysics and dependencies

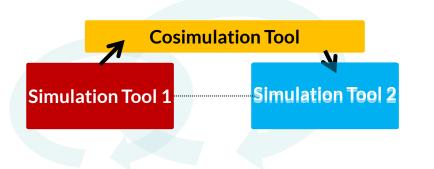

Multiphysics and cosimulation

- Engineers need to share IP
- Every engineer has their favorite environment
- Each physics has their characteristic time
- Several engineers should be able to share their data at the same time
 - And respect IP policies
 - Even if working from remote location

Multiphysics and cosimulation

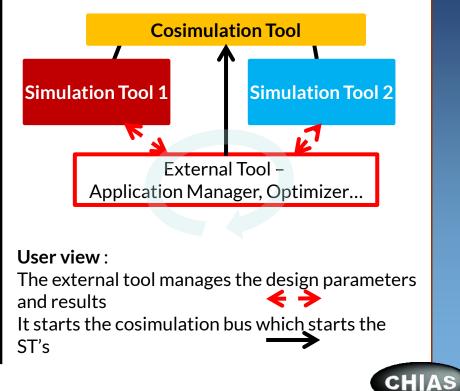

Cosimulation is the solution to those pains

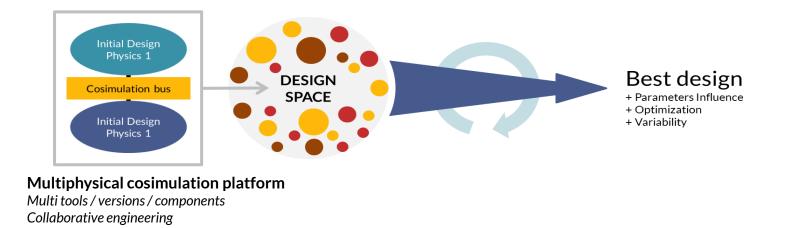
Power module cosimulation example – courtesy Safran


Bus based cosimulation

ASIM Conference, Ulm - March 2017

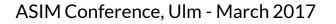
TEK


Integration and management


User view : simulation tool 1 (ST1)

ST1 contains the design parameters

ST1 sends start and stop signal to the cosimulation bus which handles ST2



LEK

We have seen how to build a platform for Design Exploration and Multiphysics

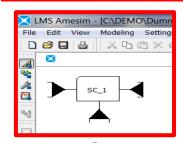
- Identify important design parameters
- Optimize
- Assess variability
- Take into account multiphysical interdependencies

CHIAS

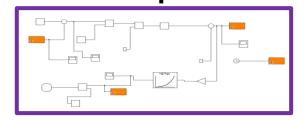
IEK

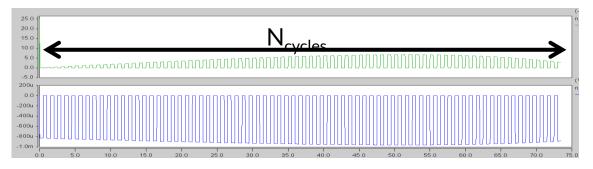
Setup

Reduced model


Variables parameters : Power supply - Manufacturing defects

- Measurements precision...


Thermal model - Amesim


CHIAS TEK

Cosimulation bus

Damage model – Simulink

Results

For one run -> one lifetime

Monte Carlo runs

	Fonk Label	Task Definition	Description	Task Result	Task Status
mc		mc -runs 100 -progress 500 -parlist :simple_re_		4 Failed	Complete w/ Failures
run=1		seed=(1333584 3331)			Complete
run=2		seed=(260400715 1725699315)			Complete
 run=3 		seed=(712137316 202229509)			Complete
• run=4		seed=(1046889951 99881706)			Complete
. run=5		seed=(737090757 223567951)			Complete
• run=6		seed=(1817439373 197149690)			Complete
∎ run=7		seed=(1773728031 456298779)			Complete
 run=8 		seed=(53338309 665949163)			Complete
o run≈9		seed=(471383311 1739166726)			Complete
 run=10 		seed=(1940416450 285303012)			Complete
. run=11		seed=(1877278120 1199313452)			Complete
• run=12		seed=(364043254 1945137768)		Passed -	Complete
 run=13 		seed=(1550126808 963449920)			Complete
 run=14 		seed=(2059993563 1013874363)			Complete
• run=15		seed=(15954438 697176975)			Complete
. run=16		seed=(225370244 1290274127)			Complete
• run=17		seed=(1551098938 1912527155)			Complete
 run=18 		seed=(2122533269 134991100)			Complete
 run=19 		seed=(1780400294 785128067)			Complete
. run=20		seed=(1312662555 545785988)			Complete
• run=21		seed-(1004504470 1186977861)			Complete
run=22		seed=(2109867374 803023869)			Complete
 run=23 		seed=(59351122 905451292)			Complete
 run=24 		seed=(629037451 1332379235)			Complete
• run=25		seed=(144323982 1675938982)		Failed	Fail
a nin=26		seed=(428633757 1917694455)		- anca	Complete

<u>Criterion:</u> Is the simulated lifetime sufficient regarding the specifications? $N_{cycles} > N_{spec}$?

CONCLUSION

Recent engineering methods such as Design Exploration and Cosimulation enable engineers to

- Share IP
- Do more multiphysical simulation effortless
- Assess any configuration early in the design cycle
- Explore alternative designs

