

Workshop of the ASIM/GI-Sections STS and GMMS HS Ulm, 09. 03. 2017

> Lars Austermann, Peter Junglas, Jan Schmidt, Christian Tiekmann

Content

- Introduction
- Example models
 - timeshared
 - o multiteller
 - jobshop
 - supplychain
- Problems implementing the examples
 - Handling of concurrent events
 - Separation of entities from a gueue
 - Storing entities
 - Time measurements across several blocks
 - Statistical analysis
- Conclusions

|+ |+ |+ Introduction

Discrete systems

- many different modeling paradigms
- graphical methods
 - abstract (Petri nets, state graphs)
 - medium level of abstraction (entities running through components)
 - concrete (material flow applications, e.g. PlantSimulation)
- medium level widely used
 - sufficiently abstract to be universally applicable
 - concrete enough to be comprehensible by users
 - process based (active components, e.g. Arena) or transaction based (active entities, e.g. SimEvents)

Closer look at transaction based modeling

- no well-established set of basic features and components (cf. SimEvents $4.4 \rightarrow 5.0$)
- open issues
 - shortcomings of current implementations
 - missing concepts or components
 - reasonable set of components
- strategy
 - implement many different applications
 - concrete: SimEvents 4.4 (Mathworks)

Time-shared computer model

- from Law's textbook
- several terminals send jobs of varying computing time demands
- processed in time slices using a round-robin scheduler

Multiteller bank with jockeying

- from Law's textbook
- bank with several teller queues
- customers are allowed to change to a shorter queue (jockeying)

Job-shop model

- from Law's textbook
- factory with five workstations
- variable kinds of jobs with different paths through the stations

supplychain

← ↑ →

Supply chain model

- from Argesim benchmark C14
- supply chain with factories, distributors and wholesalers
- wholesalers order different products from distributors
- distributors use special strategies to comply with the demand

Who defines the order of concurrent events?

- often: a global event queue
- in TBM: events are defined by blocks → order not well-defined

Example testNullserver

- · leads to error message
- undefined, what comes first at Set Attribute: new entity or new attribute value

Solutions

- ignore message → entities leave at the wrong port!
- null server after Get Attribute → model works

Old problem

BUFFER command of GPSS

Handling of concurrent events

<u>+ |+ |+ </u>

Null server - no universal solution

- its output may be blocked → null server stores entity
- no problem, if an (unlimited) queue follows

Careful with null server between queue and server

example timeshared/CPU

- server busy → next entity sits in the null server
- has to be taken into account, e.g. for computation of queue length!

Null server workaround conceptually wrong

- its purpose is not related to storage → easily forgotten
- creates unexpected problems

Several applications, e.g.

- leaving a queue after a maximal waiting time (reneging)
- changing to shorter queue (jockeying)

In SimEvents

- · reneging is implemented
- jockeying is not

Shuffle queue

- jockey event leads to cyclic walk of queue entities
- · last one gets separated

Separation of entities from a queue

Clone queue

- incoming entities are duplicated and routed to a FIFO and a LIFO queue
- jockey event → entity is taken from the LIFO queue
- · bookkeeping device destroys clones, whose partner has already left

Result

- complex timing problems → cumbersome and error prone
- · one needs generic solution
- maybe similar to user chains in GPSS

<u>+ + + </u>

Storage component for supplychain example

- input for product entities (with type and amount)
- input for order entities (with type and amount)
- · output for product entities
- signal output for inventory vector
- parameter for initial stock

Possible storage components in SimEvents

- N-server: how to get an entity of given type?
- resources: fixed amount!
- queues: one necessary for every product type!
- → do it yourself with Simulink

Implementation of inventory

Storing entities

Implementation of storage block

Result

- works but not really a "storage"
- design of a generic storage component ?
- special queue with internal advancement (user chains)?

Total waiting time in several queues

- in SimEvents: only time between two points
- solution: accumulation of several waiting times in an attribute

New timer components for Start/Pause/Continue/Read

• Submodell PauseCTimer

Time measurement across several queues

problem with null server when accumulating between queue and server

Workaroud

- measure t_{O+S} and t_S
- accumulate behind server (= before next queue) $t_Q = t_{Q+S} t_S$

Statistical analysis

<u>+ + + </u>

Decentral concept of TBM

- → no central collection instance
- block statistical data often not sufficient

Workaround

- collect data in entities
- final statistics component at the end of the entity path

Statistics components

Adder In1 Out1 Trigger() Max Single In1 Out1 Trigger() Max Single Trigger() Max Out1 Adder Out1 Trigger() Function Call Generator

Computing time averages

using continuous time domain

• atomic subsystems with 1/z block as accumulator

If necessary

create report using Matlab

Some basic problems of TBM/SimEvents

- timing of concurrent events
 - null server is the wrong solution!
- implementation of alternative queueing policies
 - a new (or old) abstraction is needed
- · storing and retrieving of entities
 - again: a basic concept is missing
- · gathering and processing of statistical data
 - a few supplementing blocks would be handy

Proposal: new Argesim benchmark with

- · modeling of jockeying queues
- statistical data over several queues
- additional complication: many queues

SimEvents 5

- complete redesign of the library
- based on a unifying theoretical description (but not DEVS)
- migration from SimEvents 4 difficult!
- is it better? We'll see ...

Conclusions

<u>+ + + </u>

For the advancement of TBM we need

- fundamental abstractions
- theoretical analysis
- stable designs

Or else we have

- tricky workarounds
- no real understanding of our models
- redesign every other year