Conceptional problems of transaction-based hWt >
modeling and its implementation in SimEvents 4.4 p

Private Hochschule
fiir Wirtschaft und Technik

Workshop of the ASIM/GI-Sections STS and GMMS
HS Uim, 09. 03. 2017

Lars Austermann, Peter Junglas,

Jan Schmidt, Christian Tiekmann
Content

Introduction

Example models
o timeshared
o multiteller
o jobshop
o supplychain

Problems implementing the examples
o Handling of concurrent events
o Separation of entities from a queue
o Storing entities
o Time measurements across several blocks
o Statistical analysis

Conclusions

e @

L]

L]

Introduction elr>
Discrete systems
« many different modeling paradigms
e graphical methods
m abstract (Petri nets, state graphs)
s medium level of abstraction (entities running through components)
m concrete (material flow applications, e.g. PlantSimulation)
¢ medium level widely used
» sufficiently abstract to be universally applicable
= concrete enough to be comprehensible by users
m process based (active components, e.g. Arena) or transaction based (active
entities, e.qg. SimEvents)
Closer look at transaction based modeling
* no well-established set of basic features and components (cf. SimEvents 4.4 - 5.0)
e open issues
» shortcomings of current implementations
® Missing concepts or components
m reasonable set of components
» strategy
= implement many different applications
m concrete: SimEvents 4.4 (Mathworks)

timeshared lelrl>

Time-shared computer model
e from Law's textbook
e several terminals send jobs of varying computing time demands
e processed in time slices using a round-robin scheduler

Computer

Terminals Unfinished jobs

Finished jobs

multiteller lelr>

Multiteller bank with jockeying
e from Law's textbook
e bank with several teller queues
e customers are allowed to change to a shorter queue (jockeying)

O A-

/ Do jockeying :

New customer

jobshop
Job-shop model

e from Law's textbook
» factory with five workstations
* variable kinds of jobs with different paths through the stations

3

e
-‘----‘----
-

Bajalals |

supplychain
Supply chain model

e from Argesim benchmark C14
e supply chain with factories, distributors and wholesalers

* wholesalers order different products from distributors

e distributors use special strategies to comply with the demand

Factories

F1

F2

F3

F4

9506 TN @0Y

-
- -"“h.‘

-
:"
! ®
-t

Distributors Wholesalers

..‘ ________________

D1
-
.1 ________________

D2
-

W

.q ________________

D3
-
..‘ ________________

D4
-

e[t]>

elt]>

Handling of concurrent events le |t 1=

Who defines the order of concurrent events?

+ often: a global event queue
e in TBM: events are defined by blocks = order not well-defined

Example testNullserver

Int Cunl
A7 compute Port ¥ty ~UI NG
@'@—‘5}_» IN -1 ouT s iNe '
BUT B IN [dFobs Cuputt
Generator Get Attribute Set Attribute Qulpl Ewiic-.hj .
9 N
COutput 2

* |leads to error message
¢ undefined, what comes first at Set Attribute: new
entity or new attribute value

Solutions
e ighore message — entities leave at the wrong port!

e null server after Get Attribute —» model works

Old problem
¢ BUFFER command of GPSS

Handling of concurrent events [« [+ [+

Null server - no universal solution
¢ its output may be blocked — null server stores entity

e no problem, if an (unlimited) queue follows
Careful with null server between queue and server
e example timeshared/CPU

M tn =, (2

Co—IN ouTh—y M N #n
i3

IN ouT
Store Parameters Comp NextServiceTime Quaue

L || 1
NextS. Time Mt wutil
SINIE
= A—(0) P outhp— 7 >

-1 auT
ouT

Server

Get NextSenvceTime | o

e server busy — next entity sits in the null server
¢ has to be taken into account, e.g. for computation of queue length!

Null server workaround conceptually wrong
e its purpose is not related to storage — easily forgotten

* creates unexpected problems

Separation of entities from a queue elrl>
Several applications, e.qg.
* leaving a queue after a maximal waiting time (reneging)
* changing to shorter queue (jockeying)
In SimEvents
* reneging is implemented
e jockeying is not
Shuffle queue
s jockey event leads to cyclic walk of queue entities
¢ |last one gets separated

% #n
trigger awiichTo2
In port
~ b= | switchTol
o ;:J) L_l» N1, g, 7 S| L vk (2>
& :> aut IN 4 & satPort =] : Server
IN2 “obT IN —OuT2
1 #e frp—
OUT
+* 4 g ol —
e [Tk Mgy ke oul;, .|"r|.rrr|.
ot Lz) Iy aut N

Jackey

Separation of entities from a queue elr >

Clone queue
e incoming entities are duplicated and routed to a FIFO and a LIFO queue

e jockey event — entity is taken from the LIFO queue
* bookkeeping device destroys clones, whose partner has already left

F. .
. L

an

by | (I Ut B3N
A IN L] DUT N .!',our “auT 1N = aufrz
FIFC Queue typ server (1) % INT)

WL R

2 Sz @_‘
Replicate Ingger u 4y [el

ir [+ fen et 4/CIL?'I HM :

u aurz B—L JOCKEY
NG

il 'y _.L Lour p—a{in ", N
SN £ S0UT B IN [UT p—S{ N ,Qj.lTs—l_» ’|;'3

LIFO Queua typ jockey (2) &

Result
e complex timing problems - cumbersome and error prone

¢ one needs generic solution
¢ maybe similar to user chains in GPSS

Storing entities 1t [+

Storage component for supplychain example

¢ input for product entities (with type and amount)
. . . — Order In stock —
* input for order entities (with type and amount)
* output for product entities
e signal output for inventory vector —?|Prod In Prod Out p>—
e parameter for initial stock Storage
Possible storage components in SimEvents
e N-server: how to get an entity of given type?
* resources: fixed amount!
e queues: one necessary for every product type!
e - do it yourself with Simulink
Implementation of inventory
Trigger
(2)—»i e >
prodType * O
Create base vector ’—’ stock
D 2
amount Inventory
Storing entities elrl>

Implementation of storage block

Change Stock

_,—’ amount
AN amaunt stocs
Pred In ST P 1N fp.!rndumld W prod Ty pe stack
[=1] Triggan}
9 INZ LT
Get Attributa 1 J
f 1
o
e NI
TBUTh—{ing
Throughput .
‘ Trigger 1 Sink
amaunt 1 = f 1 — M amaount
u 8 .
AN :Etroductld—| o Mo N —%T‘J I ﬂ?_ﬂTj B productiBouT p>—< 2 >
-3
Order In 1 grhe J - . VR (51 Prod Oul
PERE—— MEGALNE BMOUNL T oy ghput Create Entity

Trigger 2 ‘ Set Altributes

Result
e works - but not really a "storage"
+ design of a generic storage component ?
e special queue with internal advancement (user chains) ?

Time measurements across several blocks lelrl>

Total waiting time in several queues
¢ in SimEvents: only time between two points
e solution: accumulation of several waiting times in an attribute

New timer components for Start/Pause/Continue/Read

B r b r e submodell PauseCTimer
i}gpm’ﬁ—»l JP B QUT B—3 :_|—))IN OUT»‘

>

at

Start CTimer Sarver t=1 Pause CTimar2 Sarver t=2

>)
by I;.

#n

. 5 - ||
g ; b _J 5 N et 1LT1cum : —bT'II:IJIT[I! ur
—)9@993 IN——-8uT B—B:J—)a &£ (L2 JourprAN 1] ourp 5-;® M C:sz

! L dalay Connil
: e Read T1 Set T1cum
Confinue CTimer oo e i=4 Pausa CTimer Fead CTimer1 Get T1ocum

Time measurement across several queues
e problem with null server when accumulating between queue and server

Workaroud
e measure tqys and ts
¢ accumulate behind server (= before next queue) tq = tg4+s - ts

Statistical analysis et [+

Decentral concept of TBM
e = no central collection instance
e block statistical data often not sufficient

Workaround
* collect data in entities
« final statistics component at the end of the entity path

Statistics components Computing time averages

Addar
1
O3 D>
o int Qutt It a1n
Trigger(l .+ u

e using continuous time domain

¥
b4

Toum [— - :

I i

A >IN [‘!‘]! f E____
_li]CIUTB-}—}} IN £ 4% @

Get Athribute OuT b2 {2

Entity Departure auT
Function-Call Gensrator

e atomic subsystems with 1/z block as accumulator

If necessary
e create report using Matlab

Conclusions

Some basic problems of TBM/SimEvents

e timing of concurrent events
m null server is the wrong solution!

¢ implementation of alternative queueing policies
= a hew (or old) abstraction is needed

¢ storing and retrieving of entities
= again: a basic concept is missing

e gathering and processing of statistical data
= a few supplementing blocks would be handy

Proposal: new Argesim benchmark with
¢ modeling of jockeying queues
« statistical data over several queues
* additional complication: many queues

SimEvents 5
e complete redesign of the library
¢ based on a unifying theoretical description (but not DEVS)
* migration from SimEvents 4 difficult!
e is it better? We'll see ...

Conclusions

For the advancement of TBM we need
e fundamental abstractions

e theoretical analysis

e stable designs

Or else we have
o tricky workarounds
¢ no real understanding of our models
e redesign every other year

e[t]>

elt]>

