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Introduction elr>
Discrete systems
« many different modeling paradigms
e graphical methods
m abstract (Petri nets, state graphs)
s medium level of abstraction (entities running through components)
m concrete (material flow applications, e.g. PlantSimulation)
¢ medium level widely used
» sufficiently abstract to be universally applicable
= concrete enough to be comprehensible by users
m process based (active components, e.g. Arena) or transaction based (active
entities, e.qg. SimEvents)
Closer look at transaction based modeling
* no well-established set of basic features and components (cf. SimEvents 4.4 - 5.0)
e open issues
» shortcomings of current implementations
® Missing concepts or components
m reasonable set of components
» strategy
= implement many different applications
m concrete: SimEvents 4.4 (Mathworks)



timeshared lelrl>

Time-shared computer model
e from Law's textbook
e several terminals send jobs of varying computing time demands
e processed in time slices using a round-robin scheduler
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multiteller lelr>

Multiteller bank with jockeying
e from Law's textbook
e bank with several teller queues
e customers are allowed to change to a shorter queue (jockeying)
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jobshop
Job-shop model

e from Law's textbook
» factory with five workstations
* variable kinds of jobs with different paths through the stations
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supplychain
Supply chain model

e from Argesim benchmark C14
e supply chain with factories, distributors and wholesalers

* wholesalers order different products from distributors

e distributors use special strategies to comply with the demand
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Handling of concurrent events le |t 1=

Who defines the order of concurrent events?

+ often: a global event queue
e in TBM: events are defined by blocks = order not well-defined

Example testNullserver
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* |leads to error message
¢ undefined, what comes first at Set Attribute: new
entity or new attribute value

Solutions
e ighore message — entities leave at the wrong port!

e null server after Get Attribute —» model works

Old problem
¢ BUFFER command of GPSS

Handling of concurrent events [« [+ [+

Null server - no universal solution
¢ its output may be blocked — null server stores entity

e no problem, if an (unlimited) queue follows
Careful with null server between queue and server
e example timeshared/CPU

M tn =, (2

Co—IN ouTh—y M N #n
i3

IN ouT
Store Parameters Comp NextServiceTime Quaue

L || 1
NextS. Time Mt wutil
SINIE
= A—(0) P outhp— 7 >

-1 auT
ouT

Server

Get NextSenvceTime | o

e server busy — next entity sits in the null server
¢ has to be taken into account, e.g. for computation of queue length!

Null server workaround conceptually wrong
e its purpose is not related to storage — easily forgotten

* creates unexpected problems



Separation of entities from a queue elrl>
Several applications, e.qg.
* leaving a queue after a maximal waiting time (reneging)
* changing to shorter queue (jockeying)
In SimEvents
* reneging is implemented
e jockeying is not
Shuffle queue
s jockey event leads to cyclic walk of queue entities
¢ |last one gets separated
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Separation of entities from a queue elr >

Clone queue
e incoming entities are duplicated and routed to a FIFO and a LIFO queue

e jockey event — entity is taken from the LIFO queue
* bookkeeping device destroys clones, whose partner has already left
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Result
e complex timing problems - cumbersome and error prone

¢ one needs generic solution
¢ maybe similar to user chains in GPSS



Storing entities 1t [+

Storage component for supplychain example

¢ input for product entities (with type and amount)
. . . — Order In stock —
* input for order entities (with type and amount)
* output for product entities
e signal output for inventory vector —?|Prod In Prod Out p>—
e parameter for initial stock Storage
Possible storage components in SimEvents
e N-server: how to get an entity of given type?
* resources: fixed amount!
e queues: one necessary for every product type!
e - do it yourself with Simulink
Implementation of inventory
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Storing entities elrl>

Implementation of storage block

Change Stock
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Result
e works - but not really a "storage"
+ design of a generic storage component ?
e special queue with internal advancement (user chains) ?



Time measurements across several blocks lelrl>

Total waiting time in several queues
¢ in SimEvents: only time between two points
e solution: accumulation of several waiting times in an attribute

New timer components for Start/Pause/Continue/Read
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Time measurement across several queues
e problem with null server when accumulating between queue and server

Workaroud
e measure tqys and ts
¢ accumulate behind server (= before next queue) tq = tg4+s - ts

Statistical analysis et [+

Decentral concept of TBM
e = no central collection instance
e block statistical data often not sufficient

Workaround
* collect data in entities
« final statistics component at the end of the entity path

Statistics components Computing time averages
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e using continuous time domain

¥
b4

Toum [— - :

I i

A >IN [‘!‘]! f E____
_li]CIUTB-}—}} IN £ 4% @

Get Athribute OuT b2 {2

Entity Departure auT
Function-Call Gensrator

e atomic subsystems with 1/z block as accumulator

If necessary
e create report using Matlab



Conclusions

Some basic problems of TBM/SimEvents

e timing of concurrent events
m null server is the wrong solution!

¢ implementation of alternative queueing policies
= a hew (or old) abstraction is needed

¢ storing and retrieving of entities
= again: a basic concept is missing

e gathering and processing of statistical data
= a few supplementing blocks would be handy

Proposal: new Argesim benchmark with
¢ modeling of jockeying queues
« statistical data over several queues
* additional complication: many queues

SimEvents 5
e complete redesign of the library
¢ based on a unifying theoretical description (but not DEVS)
* migration from SimEvents 4 difficult!
e is it better? We'll see ...

Conclusions

For the advancement of TBM we need
e fundamental abstractions

e theoretical analysis

e stable designs

Or else we have
o tricky workarounds
¢ no real understanding of our models
e redesign every other year
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