Open Innovation/Sagitta – Implementation and Validation of a Real-Time Flight Dynamics model for Simulation, Integration Testing and Pilot Training

Richard O. KUCHAR

Sagitta

German Aerospace Center (DLR)

Institute of Systemdynamics and Control (SR), Dept. of Aircraft System Dynamics (FLS)

ASIM 2017 Ulm, 09.03.2017

Outline

- Introduction to the OpenInnovation/Sagitta project
- Introduction to the Sagitta Simulation and Integration Testing (SIT) environment
- Flight Dynamics Model (FDM) implementation
 - Modelica Flight Dynamics Library
 - Integration of Sub-Components:
 - Mass model
 - Aerodynamic model (ADM)
 - Propulsion (PROP) model (similar Actuator (ACT) model integration)
 - Assembly of the Sagitta SIT Flight Dynamics model
- Sagitta SIT FDM Validation measures
- SIT in-use videos
- Conclusion and Outlook

Sagitta – Airbus Defence and Space Open Innovation UAV Technology Scouting Initiative

Our task in the scope of the Demonstrator A/C (Requirements for SIT)

Simulation and Integration Testing Setup:

- One setup for simulation and integration testing activities forming a "virtual aircraft"
- "Step-by-step" replacement of software models with available hardware controlled via patch panel
- Simulation models resemble identical ICD, as original flight H/W
- Scriptable / automated simulation and test execution
- Real-time capable system, with defined maximum latencies (along H/W measurements)
- Fault insertion capabilities ...

... used for:

- Simulation Studies for early design evaluation (e.g. Manual Landing Study, Taxi Tests, ...)
- Integration Testing (from component level fully assembled aircraft, "hybrid setups", V-model)
- Formal First Flight Qualification of Aircraft and Equipment
- External Pilot Training for maiden flight

→ Basic Model Setup:

- Modelica based Flight Dynamics Model (integrated via Functional Mockup Interface)
- Simulink component models (integrated via Simulink Coder)

Overall development process – Simulation/I&T interaction

Architecture and Implementation of the Sagitta Simulations- und Integration Testing environment (SIT)

Software for Simulation and Integration Testing

MiLS – Airbus DS SIRIUS:

- Execution of models based on AP2633 and ARINC653 standards
- Source code in ANSI C/C++/ADA direct embeddable, C++/C# etc. require wrapper functions + runtime
- SIRIUS SDK for directly embedding SIRIUS functionality in model code (e.g. network sockets, shared memory, timers, ...)
- Utility functions: "SIRIUS Workbench" (Eclipse RCP based) and "SIRIUS Web interface" simulation control, Scripting interface (Groovy, Python), "Record"/"Replay", ...

HiLS/IT – Airbus DS AIDASS:

- Supports multiple I/O interface boards via PCIe: RS232/422, Ethernet, CAN/ARINC825, Discrete, MILBUS and many more
- On- and Offline Data analysis "Record" and "Replay", Script, Real-time scripting and User-Program capabilities for test case execution
- Signal generator for specific test signal generation

→ Interfacing AIDASS with SIRIUS via TssGateway Service (Interprocess Communication, performance critical)

- The Sagitta Demonstrator FLIGHT DYNAMICS MODEL -

Flight dynamics – 6DOF Equations of motion

- Simplified equations of motion:
 - Forces:

$$\begin{pmatrix} X_{aero} + T_x + X_{ldg} \\ Y_{aero} + T_y + Y_{ldg} \\ Z_{aero} + T_z + Z_{ldg} \end{pmatrix} = m \begin{pmatrix} \dot{u} + qw - rv + g_0 \sin\Theta \\ \dot{v} + ru - pw - g_0 \cos\Theta \sin\Phi \\ \dot{w} + pv - qu - g_0 \cos\Theta \cos\Phi \end{pmatrix}$$

 and <u>Moments</u> (w/o contributions by propulsion and systems)

$$\begin{pmatrix} L \\ M \\ N \end{pmatrix} = \begin{pmatrix} I_x \dot{p} + (I_z - I_y) \\ I_y \dot{q} + (I_x - I_z) \\ I_z \dot{r} + (I_y - I_x) \\ pq \end{pmatrix}$$

With:

- p,q,r ... Angular velocity in body frame
- u,v,w ...Velocity of A/C in body frame
- Φ,Θ ... Euler angles

Sagitta SIT model interaction – FDM

DLR-SR Flight Dynamics Library

FDM Sub-Components – I

- <u>Aerodynamic Data Module (ADM)</u> provided by TUM-AER/THI:
 - Derived from wind tunnel data and CFD results (dynamic derivatives, consolidation)
 - Originally provided via Matlab script
 - Reworked into vectorized interpolation scheme, ANSI C-code
 - Integration into Modelica FDM framework:

- Propulsion model (PROP) I provided by TUM-LLS:
 - Derived from test bench data (static and dynamic thrust and CFD results (intake)
 - Originally provided as Simulink model
 - Integration into Modelica FDM framework:
 - Extract all dynamic content (delays, integrators, ...) from the model

FDM Sub-Components – II

Propulsion model (PROP) – II Integration of coded PROP model into the Modelica context: Export model via Simulink Coder without continous states: Simulink model embedded in **Modelica** DUI SION Codor Bio function ENG MOD Coder InitModel Simulink Coder generated external "C" ENG MOD Coder InitModel (); function calls annotation (Include = "# include \" ENG MOD Coder.c\""); end ENG MOD Coder InitModel ; function ENG MOD Coder OneStep input Real[18] dU; Re-established dynamic content of output Real[26] dY: the original S/L model in Modelica external "C" ENG_MOD_Coder_OneStep_(dU, dY); (e.g. Transport Delay, Integrator, ...) annotation (Include = "#include \" ENG MOD Coder. $c \setminus ""$); end ENG_MOD_Coder_OneStep_;

... similar to Actuator model integration

FDM Sub-Components – III

Mass/Weight-and-Balance (WaB) model

- Covers all variations of:
 - Center of Gravity (CoG)
 - Inertia
 - due to Mass-changes / Fuel Flow
- Therefore WaB and PROP are interacting via Fuel Integrator
- Tank system consists of Main tank and hopper tank
 - therefore causing nonlinear WaB characteristics

(S/L Coder Export)

ż.m.z

SOLVER (Fwd. Euler / Adams-Bashforth

x0

SIRIUS wrapper code - other modules.

FMI is a standardized interface for the integration of exported Modelica models (ANSI-C code) with various simulation frameworks and platforms – without platform & proprietary dependencies

 \rightarrow ModelExchange Version utilized for FDM

FDM Validation – Stationary comparison

- Comparison based on dissimilar development of FDM: DLR-SR SIT vs. TUM-FSD FCL Synthesis models
- 240 trim cases compared (Air-speed, mass and altitude variations)

FDM Validation – Linearized Model comparison

• Linearized models have been derived for each of the 240 trim points and compared

LONGITUDINAL Motion - SPEED = 55m/s, ALTITUDE = 250m, FUEL MASS = 0kg LATERAL Motion - SPEED = 55m/s, ALTITUDE = 250m, FUEL MASS = 0kg

FDM Validation – Mission comparison examples

Videos – L0 SIT Trials (07.03.2017)

Take-off

L0 SIT Setup

Landing

Conclusion and Outlook

- A flexible and versatile Simulation and Integration Testing environment has been implemented and is intensively used
- **Core element is the Flight Dynamics model** receiving commands from FCC and stimulating the SENSOR models thus closing the loop
- Major challenge: Define and integrate the respective Sub-Component models (ADM, Propulsion and Actuation) in order to integrate smoothly with the FDM
- Lessons learnt: Basic Time Frame of SIT preparations should be in ADVANCE of general implementation activities if and where possible!
 - **Incremental build-up of flight-dynamics and component models** in order to keep complexity manageable, when high-fidelity sub-models arise.
 - Stabilization of SIT implementation activities early on, then follow on with documented and tested "small, incremental" steps
 - Validation of models is time consuming, but a core necessity!
- Currently intensive testing on all system levels is underway in advance of the Sagitta Maiden Flight

Thank you for your attention! Questions?

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Systemdynamik und Regelungstechnik (DLR-SR-FLS)

> Dipl.-Ing. (TU) Richard O. Kuchar Tel.: +49 8153 28-2497 Email: richard.kuchar@dlr.de

