

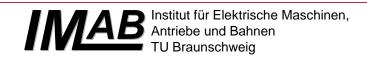
Simulationsgestützter Entwurf eines 48 V/ 12,5 kVA Wechselrichters für Mild-Hybrid Fahrzeuge

Konstantin Siebke

48 V Bordnetze für Mild-Hybrid Fahrzeuge

Vorteile:

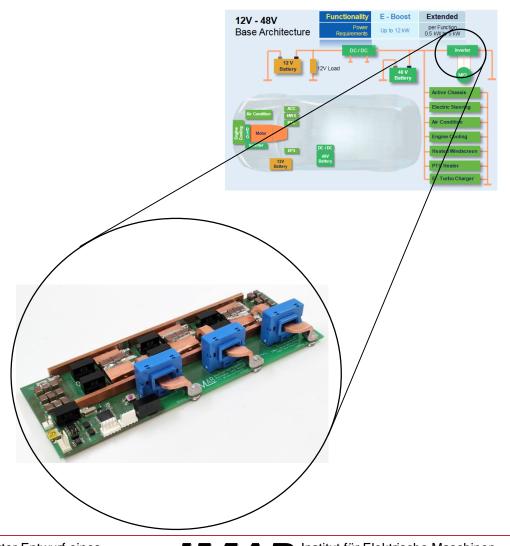
- Aufwändiger Berührschutz erst ab 60 V
- Geringerer technischer Aufwand
- Kosteneinsparung


Herausforderungen:

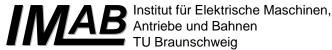
- Handhabung der hohen Ströme (bei 10 kW, ca. 200 A)
- Optimale Ausnutzung der Spannung für E-Maschine

Abbildung 1: Struktur eines 48 V Bordnetzes [1]

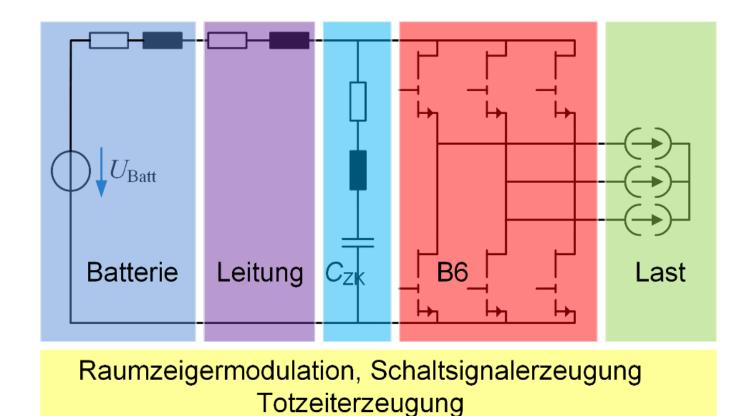
Gliederung

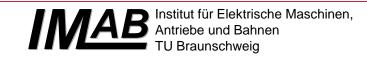

Elektrische Simulationen:

- Verlustleistungsberechnung
- Auswahl der Leistungshalbleiter (Art und Anzahl)


Thermische Simulationen:

- Auslegung und Entwurf des Kühlkörpers
- Bewertung der Kühlkonzepte


Zusammenfassung



Simulationsmodell des Wechselrichters

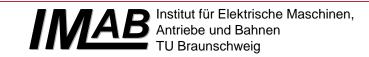
Simulation mit ANSYS Simplorer

Untersuchte Leistungshalbleiter

Silizium (Si)

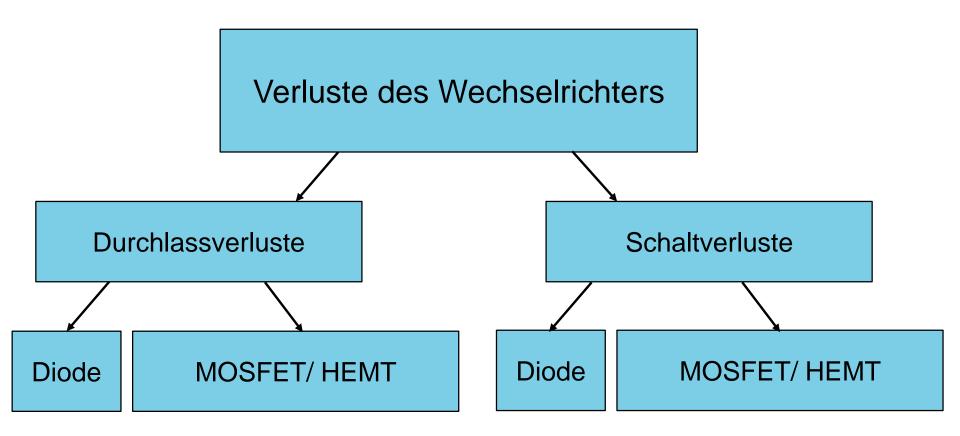
MOSFET 1: Infineon OptiMosTM IPB015N10N5, 100 V, 300 A, 1,5 m Ω

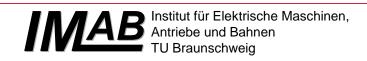
MOSFET 2: Infineon OptiMosTM IPB017N10N5, 100 V, 180 A, 1,7 m Ω



Galliumnitrid (GaN)

HEMT (High Electron Mobility Transistor): GaN-Systems GS61008T, 100 V, 90 A, $7~\text{m}\Omega$





Modellbildung der Leistungshalbleiter

Verluste des Wechselrichters

Modellbildung der Leistungshalbleiter

Durchlassverluste

Simulation der Durchlassverluste durch statische Modelle der Leistungshalbleiter:

- Ersetzen des MOSFETs/ HEMTs durch Widerstand R_{DS(on)} und Schalter
- Vereinfachung der Diode durch Forwardspannung V_F und Forwardwiderstand R_F

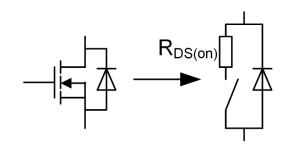


Abbildung 2: Statisches Simulationsmodell des Leistungshalbleiters

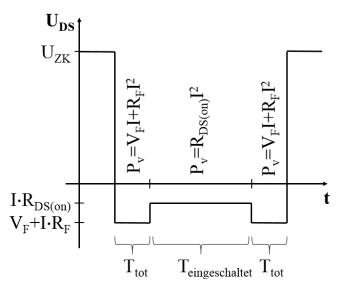


Abbildung 3: Durchlassverluste während der Rückwärtsleitung des MOSFETs

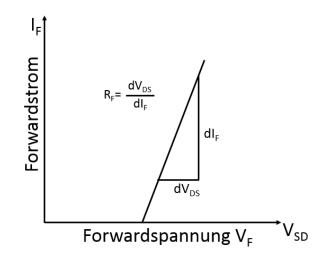


Abbildung 4: Vereinfachte Diodenkennlinie

Modellbildung der Leistungshalbleiter Schaltverluste

Simulation der Schaltverluste ist durch statische Modelle der Leistungshalbleiter nicht möglich

→Abhilfe:

- Analytische Berechnung der Schaltverluste
- Modellierung der Schaltverluste durch Berechnungsvorschrift im Simulationsmodell

$$E_{on/off} = E_{on/off}(U_N, I_N) \frac{I_{DS}}{I_N} \frac{U_{DS}}{U_N}$$

Mit $E_{on/off}(U_N, I_N)$ Schaltenergie bei U_N und I_N , Datenblattangabe

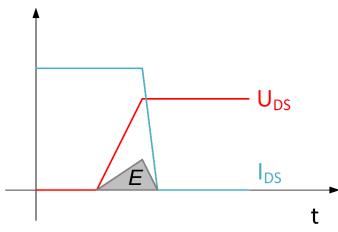
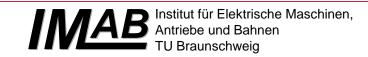



Abbildung 5: Idealisierter Ausschaltvorgang

Simulation der Halbleiterverluste

Leistungshalbleiter		Verlustleistung/ Parallelschaltung
Si MOSFET 1	*	48 W
Si MOSFET 2	\$ \$	61 W
Si MOSFET 2, 2 parallel	\$\frac{1}{2}	32 W
GaN HEMT 2 parallel		207 W
GaN HEMT 3 parallel		140 W
GaN HEMT 4 parallel		105 W
GaN HEMT 5 parallel		85 W

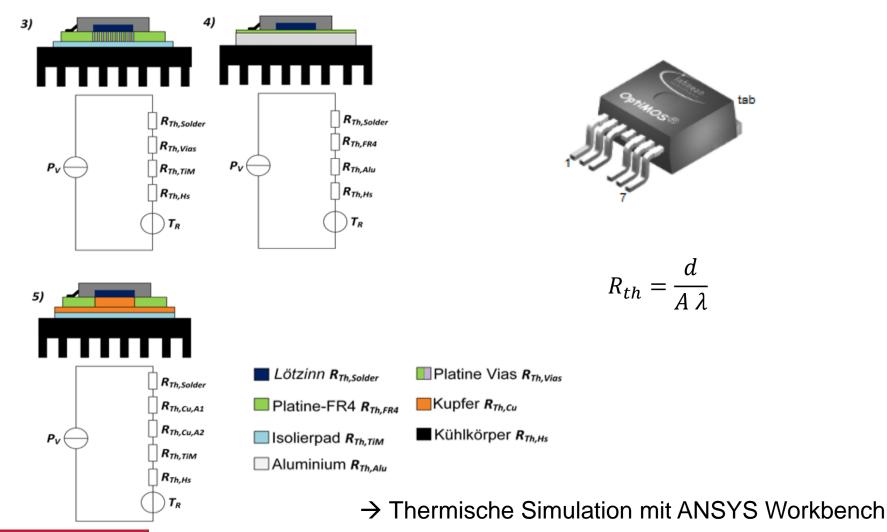
Gliederung

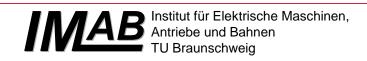
Elektrische Simulationen:


- Verlustleistungsberechnung
- Auswahl der Leistungshalbleiter (Art und Anzahl)

Thermische Simulationen:

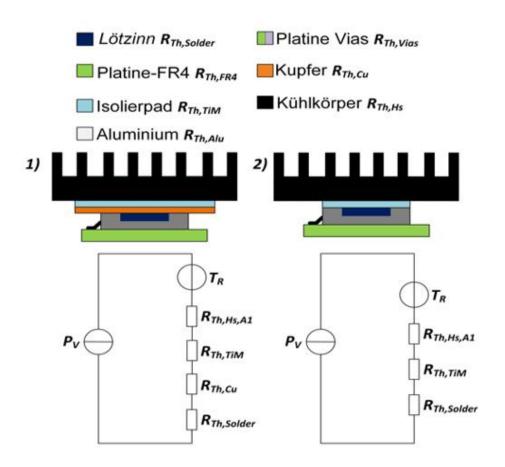
- Auslegung und Entwurf des Kühlkörpers
- Bewertung der Kühlkonzepte

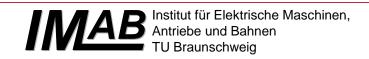

Zusammenfassung



Thermische Simulation des Wechselrichters

Entwärmungsmöglichkeiten für Si-Leistungshalbleiter




Thermische Simulation des Wechselrichters

Entwärmungsmöglichkeiten für GaN-Leistungshalbleiter

$$R_{th} = \frac{d}{A \lambda}$$

Thermische Simulation des Wechselrichters Temperaturverteilung Si

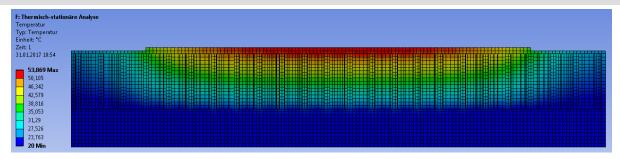
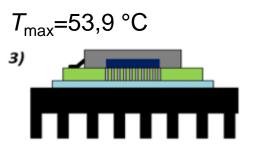



Abbildung 8: Temperaturverteilung Si, thermische Vias

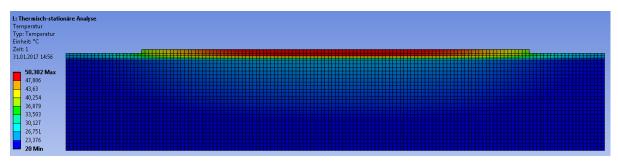
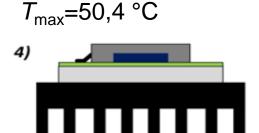
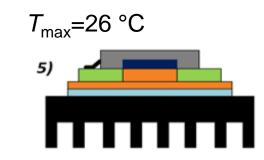




Abbildung 9: Temperaturverteilung Si, Aluminiumplatine

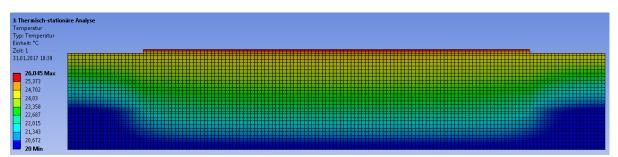
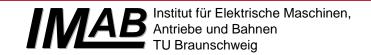



Abbildung 10: Temperaturverteilung Si, Kupferfüllung

Thermische Simulation des Wechselrichters Temperaturverteilung GaN

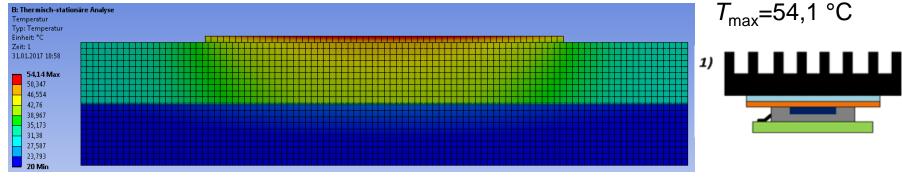


Abbildung 6: Temperaturverteilung GaN mit Wärmeverteiler

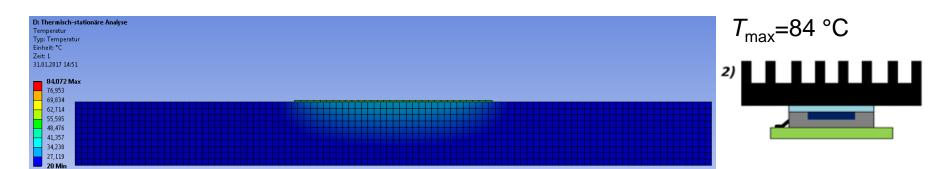
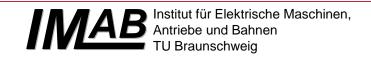
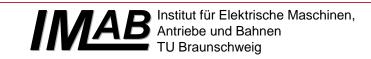



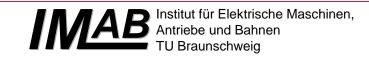
Abbildung 7: Temperaturverteilung GaN ohne Wärmeverteiler

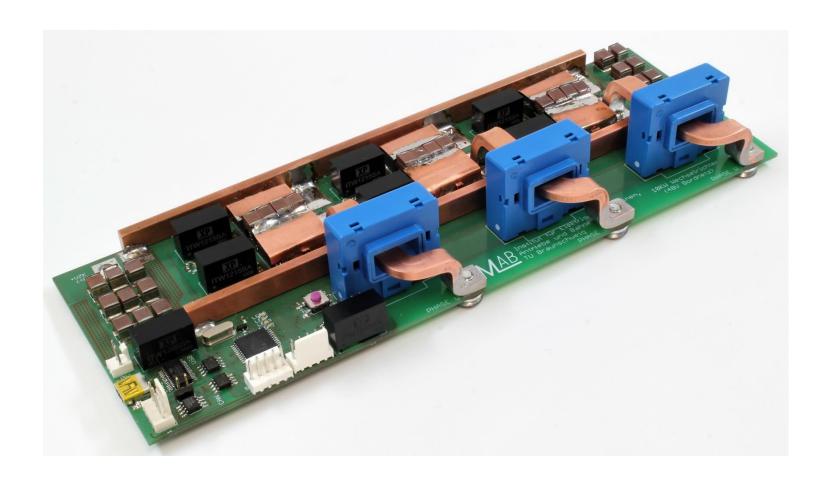
Thermische Simulationen des Wechselrichters


Vergleich Berechnung-Simulation

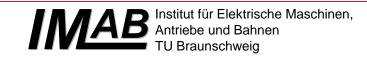
Konfiguration	Berechnung	Simulation
1) GaN mit Wärmeverteiler	40,2 °C	54,1 °C
2) GaN ohne Wärmeverteiler	73,8 °C	84 °C
3) Si mit Vias	24,5 °C	53,9 °C
4) Si mit Aluminiumplatine	35,2 °C	50,4 °C
5) Si mit Kupferfüllung im PCB	24,8 °C	26 °C

→ Erhöhung der thermischen Widerstände durch ungleichmäßige laterale Ausbreitung des Wärmestroms in der Simulation




Zusammenfassung

- Auslegung eines 48 V/ 12,5 kVA Wechselrichters
- Bestimmung der Verlustleistung mit ANSYS Simplorer
- Verwendung von statischen Halbleitermodellen und Berechnungsmodelle für Schaltverluste
 - → 2 parallele Si-MOSFETs (180 A)
- Untersuchung der Entwärmungsmöglichkeiten mit ANSYS Workbench
- Vergleich mit 1d-Berechnung

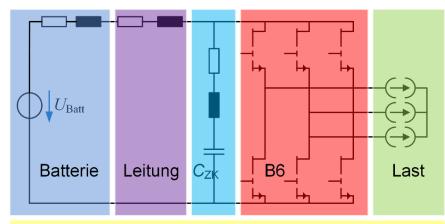


Vielen Dank für Ihre Aufmerksamkeit!

Literatur

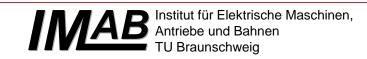
Literatur

- [1] J. Bilo, H.-G. Burghoff, 48-V-Bordnetz Schlüsseltechnologie auf dem Weg der Elektromobilität. Zentralverband Elektrotechnik- und Elektronikindustrie, Frankfurt a. M., Dez 2015.
- [2] G. Tareilus. *Der Auxiliary Resonant Commutated Pole Inverter im Umfeld schaltverlustreduzierter IGBT-Pulswechselrichter* Dissertation, TU-Braunschweig, 2002.
- [3] C. Faraji-Tajrishi. Entwurf und Aufbau eines 10 kW Wechselrichters mit 48V Bordnetz für Hybridfahrzeuge, Masterarbeit, TU-Braunschweig, 2017
- [4] K. Siebke, T. Schobre, N. Langmaack, R. Mallwitz, GaN based DC-DC Power Conversion-Experiences from Earth to Space, ESA/ECSAT, 8th Wide Bandgap Semiconductor and Components Workshop, Harwell, UK, 2016



Zwischenkreiskapazität

- Ermittlung des Worst Case Betriebspunktes
- Bestimmung der Spannungswelligkeit am Zwischenkreiskondensator
- Skalierung der Zwischenkreiskapazität
- Reduzierung der Spannungswelligkeit auf Vorgabe, z. B. 1 % der Zwischenkreisspannung


Exemplarisch für 0,5 V Spannungswelligkeit, 2,5 m Zuleitung (2,5 µH)

 \rightarrow 600 μ F

Raumzeigermodulation, Schaltsignalerzeugung
Totzeiterzeugung

