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Abstract

This paper presents an interdisciplinary, novel approach for incorporating day-ahead solar forecast obtained using numeric mod-
els into a real-time simulation framework for low-voltage microgrid analysis. The solar forecast data were integrated into the grid
simulation at the information, communication, and function levels, utilising the data model and communication structure defined
in the international standard IEC 61850. Given the forecast of solar power and a reference trajectory defined by the upper-level
grid management system over a sliding predictive time window, a model predictive control scheme has been implemented to
compute control setpoints for solar curtailment in a simplified simulation scenario, regardless of the power flow over lines. In the
virtualised environment with decentralised intelligent controllers in containers, the control setpoints are communicated between
the IEC 61850 client and server and implemented as measures for solar peak-shaving. The test results showed that the model
predictive control scheme outperformed trivial linear control methods, suggesting that the container-based virtualisation concept
has the potential to be further exploited for practical use cases at the utility and energy market level, and the IEC 61850 standard
could be a feasible solution in terms of grid communication and forecast integration.

1 Introduction

In recent years, as the conventional power plants stage out step
by step and the share of renewables increases, a part of the sys-
tem dynamics occasioned by the energy transition is moving
from centralised entities to distribution systems, particularly
in low-voltage (LV) networks. This change poses new chal-
lenges for the operation of distribution systems. Therefore, new
concepts and strategies for system stabilisation and optimised
flexibility utilisation are currently in demand.

Future electric distribution networks are complex systems con-
taining huge amounts of Distributed Energy Resources (DER),
including flexible loads, generating units and energy storage
systems. These volatile systems introduce short-term dynamics
into the operational process while also giving Distribution Sys-
tem Operators (DSO) more flexibility options. Accurate solar
and meteorological forecast data are crucial for operational
processes, like reserve capacity management, hybrid system
integration, storage utilisation, and participation in energy trad-
ing markets. Solar forecasting helps mitigate risks caused by
extreme atmospheric events, and improve the utilisation of flex-
ibility provided by DERs to ensure a stable distribution system
operation and seamless market integration.

However, the technical integration of solar forecast into oper-
ational processes may be complicated due to a variety of

standardised and proprietary data storage options, data model
structures and communication protocols. As the operation of
distribution networks involves the modelling and computation
on a larger scale than the centralised operation of transmis-
sion networks, innovative approaches combining standardi-
sation and automation aspects must be carried out from a
DSO perspective. Furthermore, advanced numerical methods
for Optimal Power Flow (OPF) analysis [1] and Model Predic-
tive Control (MPC) [2] need to be implemented with regard to
DER and microgrid characteristics in order to compute control
setpoints for DER in the sense of solving constrained nonlinear
optimisation problems.

This paper proposes the following new concepts: 1) a semi-
standardised IEC 61850 data interface for the management and
application of meteorological data, including solar forecast;
2) a container-based real-time grid simulation framework to
enable microgrid simulation applications with scalable virtu-
alised Intelligent Electronic Devices (vIED). The abbreviation
“vIED” was initially introduced by [3] to represent an IED in
the cloud. In the context of DER integration, vIED refers to any
IED that runs in a virtualised environment, such as a Docker
container. To demonstrate the concept of IED virtualisation, a
simplified MPC scheme for the peak-shaving on Photovoltaic
(PV) systems in a LV microgrid has been implemented and val-
idated within the proposed virtualisation framework.
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2 Methodology

Using the IEC 61850 standard as a fundamental element,
the proposed simulation framework requires interdisciplinary
design and implementation of vital components and interfaces.
These concepts are presented extensively in this section.

2.1 Forecasting of Solar Irradiance and PV Feed-in Power

In general, forecasting combines satellite-based Cloud Motion
Vectors (CMV) with global Numerical Weather Prediction
(NWP) models to derive solar irradiation and other meteo-
rological variables. PV forecast encompasses two modeling
aspects: weather modeling and PV system modeling. The pri-
mary focus of weather variable forecasting is solar radiation,
with secondary attention given to air temperature and other
meteorological parameters. Various techniques are employed
to forecast solar irradiance, contingent upon the forecast hori-
zon and intended data usage. With meteorological inputs, tech-
nical parameters of the PV system, and local site information
entering the simulation framework, the PV feed-in power can
be calculated using various numerical models. Table 1 com-
pares several commonly deployed solar forecast types in the
industry. Each method has advantages and disadvantages con-
sidering the forecast timescale and spatial resolution. A more
comprehensive overview of solar forecasting and nowcasting is
provided by [4] and [5], respectively.

On the forecast provider side, one commonly used way of fore-
cast data provision is stacking the data in formatted text files on
a dedicated server. Depending on user configuration, the fore-
cast data can be generated and delivered to the server regularly
at different time intervals and with different time steps. Each
file contains metadata, timestamps, solar irradiance data, other
meteorological data, and if available, the PV feed-in power.

Table 1 Overview of commonly used solar forecast methods

Type Technique Use Cases
Nowcasting
(0-4 hours
ahead)

Sky-cameras (0-1), extrapo-
lation of actual time-series
data from measurement
devices, or satellite-based
CMV models (0-4)

Improve PV power
production, PV out-
put ramps manage-
ment, storage and
hybrid systems per-
formance

Intra-day
forecasting
(up to
24 hours
ahead)

NWP models standalone
or more often in com-
bination with CMV
methods, employing blend-
ing methodologies to fit
forecasted data to local site
or area conditions.

Support short-term
energy market,
storage, and hybrid
systems perfor-
mance

Day-ahead
forecasting

Combination of several
NWP models

Improve system
balance and antici-
pate critical events

Multi-
day-ahead
forecasting

Based on NWP models with
a prediction horizon up to 14
days

Support scheduling
and maintenance

2.2 Standardised Modelling of Meteorological Parameters

The first step in the semi-standardised forecast integration on
the utility side is to map the meteorological parameters onto
the IEC 61850 terminology [6], [7]. In the real-time simula-
tion, values of these parameters can be communicated between
the vIED and the centralised management system using their
unique identifiers, known as Manufacturing Message Specifi-
cation (MMS) addresses of IEC 61850 Data Attributes (DA).
Table 2 shows the MMS addresses of several essential mete-
orological parameters as an example, while in this work the
Global Horizontal Irradiance (GHI) or PV output power is the
most relevant. It must be noted that the IEC 61850 DOs for
isolation are intended used as solar irradiance for simplicity; in
more practical applications, the unit must be specified to avoid
unexpected data scale.

2.3 Energy Data Management with IEC 61850

In general, real-time applications require neatly organised data
and efficient data interfaces, which can be complicated regard-
ing the selection of communication protocols and data formats.
Utilising the hierarchical structure of IEC 61850 data models
can help to facilitate energy data management within a utility
and eliminate syntax errors in data queries. At the informa-
tion level, a semi-standardised data interface between vIEDs
and a time-series database has been implemented following the
IEC 61850 data structure. More specifically, the MMS address
of an IEC 61850 DA or sub-DA is split down into column
names in the database. Given a unique vIED identification, the
combination of column name keywords will point to a distinct
data set for data transfer. Such a MMS breakdown for the IEC
61850 DO METEO/MMET1.HorInsol.mag.f is presented
in Table 3, this data mapping concept has been implemented
for the time-series database used in the real-time simulation.

Table 2 Modelling of meteorological parameters with the
IEC 61850 standard

Parameter MMS address
Total horizontal insolation METEO/MMET1.HorInsol.mag.f
Direct normal insolation METEO/MMET1.DctInsol.mag.f
Diffuse insolation METEO/MMET1.DffInsol.mag.f
Vertical wind speed METEO/MMET1. VerWdSpd.mag.f
Environment temperature METEO/MMET1. EnvTmp.mag.f
PV output active power METEO/MMXU1. TotW.mag.f

Table 3 Example of MMS breakdown for the parameter GHI
and mapping onto the database structure

IEC 61850 jargon Column name Example
Logical Device LD METEO
Logical Node LN MMET
Data Object DO HorInsol
Data Attribute / Sub Data Attribute DA / SDA mag.f
Common Data Class CDC MV
Functional Constraint FC MX
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(a) (b)

Fig. 1 (a) Data set for the 30 kW reference PV system after data selection, (b) data set (aggregated values) for a LV microgrid
with 100 nodes after data scaling, Pnet, Pnet_pred and Pref represent aggregated net active power by measurements, aggregated
net active power by prediction and the reference trajectory.

2.4 Model Predictive Control for Solar Peak-shaving

In a microgrid simulation, the centralised Microgrid Man-
ager (MGM) performs curtailment on PV systems during peak
hours of solar energy generation, to follow the reference tra-
jectory given by an upper-level grid management system. In
this context, a simplified MPC scheme has been implemented
to compute the optimal control setpoints subject to the active
power constraints, while not considering the power flows.

2.5 Simplified Microgrid Simulation with vIEDs

A real-time simulation environment consisting of scalable, con-
tainerised vIEDs is applied to replicate the dynamics at the
communication level in practice. Following an agent-based
approach, the containerised vIEDs represent physical IEDs at
different nodes in a LV grid. The data model and MMS pro-
tocol defined in IEC 61850 are used as the communication
interface between the MGM and vIEDs for standardised data
transition. This functionality is provided by the self-developed
open-source Python module pyIEC61850DER [8], which
utilises the Python binding of another open-source module
libIEC61850 [9]. The LV microgrid simulation is simplified
by not considering node power injections, node voltages and
branch power flows. Since no physical PV inverter is involved
in the simulation, a Python function embedded in the vIED
implements the data provision and PV curtailment.

3 Implementation

This section focuses on data preparation, vIED configuration,
and implementation of the MPC scheme. Technical implemen-
tation of fundamental vIED functionalities is out of scope.

3.1 Data Preparation

Data pre-processing is a preliminary step to conduct multiple
simulations using an identical setup. Essential data sets and
required pre-processing steps are presented in Table 4.

The local DSO collected the measurements via a metering plat-
form from 2015 to 2018, whereas the solar prediction has been

available since 2020, resulting in a temporal mismatch between
the two data sets. At the time of implementation and test-
ing, data collection and pre-processing of PV measurements
from recent years had not been completed. This circumstance
required manual generation of plausible data sets as simula-
tion inputs, which would not affect the numerical analysis. The
reference PV system, for which solar power prediction is avail-
able, has an installed capacity of 30 kW, daily forecast and
metering data sets with the lowest root-mean-squared error was
considered the best match as shown in Figure 1 (a). This pro-
cedure resulted in two data sets representing a clear-sky day
for the reference PV system. The solar irradiance is assumed
to have been identical in the same region, and the measure-
ments indicate that some PV inverters in the microgrid had
not been operating under the registered maximal feed-in power.
Therefore, the scaling factor is necessary and it can be denoted
by

ηi =
pi,nom

30
×

max
(
p(1)
i , · · · , p(1440)

i

)
max

(
p̂(1)
i , · · · , p̂(1440)

i

) (1)

Table 4 Data sets for the MPC simulation

Data set Pre-processing step
LV node load profiles Meter data collected from LV households

in 2016, randomly assigned to vIEDs;
temporal resolution of 15 minutes, lin-
early interpolated to 1 minute

Solar generation profile Meter data collected from small-sized PV
systems in 2016, randomly assigned to
vIEDs; temporal resolution of 5 minutes,
linearly interpolated to 1 minute

Reference day-ahead
solar power prediction

Feed-in power prediction in 2023 for a
30 kW PV system, provided by Solargis
s.r.o., computed based on numerical mod-
els

Scaled day-ahead solar
power prediction

Reference prediction multiplied by a scal-
ing factor η

Reference trajectory of
net power demand

Artificial permutation on the aggregated
net power demand of all households in the
LV microgrid
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where i ∈ N+ stands for the index of a PV system in the micro-
grid, pi,nom is the nominal active power of i-th PV system, and
the two sets

(
p(1)
i , · · · , p(1440)

i

)
and

(
p̂(1)
i , · · · , p̂(1440)

i

)
repre-

sent measured and predicted values of that PV system the on
the same day as the reference PV, with one-minute interval.

It should be mentioned that the computation of active feed-in
power depends particularly on the technical setting of the PV
panels, such as type, quantity, inclination and orientation. For
simplicity, those technical factors were not taken into account
when scaling the profiles of solar power prediction.

Figure 1 (b) illustrates the aggregated single-day profiles,
including the net active power demand of the microgrid under
observation, the predicted net power demand, and the artifi-
cially generated reference trajectory representing an operation
schedule given by an upper-level grid management system.

3.2 Container Configuration and vIED Interfaces

The virtualised simulation environment is constructed using
a batch of pyIEC61850DER Docker containers, assuming
each container is IEC 61850 compliant regarding data mod-
elling and communication. All containers use the same image
but are assigned different communication addresses. Figure 2
depicts the overall architecture of the simulation environment.
It should be noted that the MGM, the time series database and
all containers are located in the same communication network
for simplicity, where no network impairment is applied.

In this context, the terminology vIED refers to the Python pro-
gramme that runs within a Docker container and acts as an IED
server. In general, all vIEDs have a similar configuration, which
primarily involves defining DA data sources to enable the real-
time data interface and selecting input arguments to activate
the runtime processing logic. Functionally, the containers only
differ in the target data set name for data transfer between the
vIED and the time series database. During the real-time simula-
tion, the database interface will be called only once after vIED
initialisation, to load daily generation and load profiles as listed
in Section 3.1 and store the data locally for runtime processing.

Fig. 2 Schematic representation of the microgrid simulation
with vIEDs and a time series database.

Table 5 Relevant parameters for the real-time simulation

Parameter MMS address
PV active power PV1/MMXU1.TotW.mag.f
Predicted active power METEO/MMET1.HorInsol.mag.f ∗

Load active power LOAD1/MMXU1.TotW.mag.f
Net active power absorption PCC/MMXU1.TotW.mag.f
Max active power PV1/DGEN1.WMaxRtg.setMag.f
Min active power PV1/DGEN1.WMin.setMag.f ∗∗

Control setpoint [0..1] PV1/DGEN1.OutWSet.setMag.f
Control setpoint [W] PV1/DGEN1.WMax.setMag.f

∗ Intended misuse of the DO HorInsol as active power prediction
∗∗ The DO WMin is customised

On the communication side, MGM initialised the IEC 61850
MMS channels using the IEC 61850 client interface provided
by libIEC61850 [9]. The MGM holds these channels open
throughout the simulation, and collects data from all vIEDs
every 60 seconds, the MMS addresses of associated IEC 61850
DAs are listed in Table 5. In the control direction, only the DO
OutWSet (float between 0 and 1) is transferred back to the
vIEDs, while an internal operation logic of the vIED handles
the updating of other associated DOs.

3.3 Implementation of the MPC Scheme

The formulation of the MPC model follows the concept pro-
posed in [10], whilst in this work, the PV inverters are used
as flexibility options instead of residential batteries. Assume
the LV microgrid contains I ∈ N+ households, the simulation
period contains N ∈ N+ time steps and the MPC scheme con-
siders K ∈ N+ predictive time steps (including the current time
step n, n ≤ N −K + 1), then the aggregated net active power
demand of the MG at time step n reads as follows:

P agg(n) =

I∑
i=1

pi(n) =

I∑
i=1

(
pl
i(n)− pg

i (n)
)

(2)

where the superscripts l and g refer to load and generation.
The vector that stores the aggregated net active power demand
over a sliding prediction time window can be described as
P agg = (P agg(n+ k))

k=0,··· ,K−1
∈ RK .

Let the control variable ui(n) denote the change of curtailment
(OutWSet) at time step n ∈ N+, which will cause changes
in the constraints at the following time step n+ 1 in terms
of flexibility provision. For instance, let the values of the ref-
erence trajectory be stacked in the vector ζ ∈ RK . Then the
vector ui = (ui(n), · · · , ui(n+K − 1)) , i ∈ {1, · · · , I} con-
tains the predictive control setpoints for PV system i over the
discrete prediction time window [n : n+K − 1]. Accordingly,
all control values at one MPC step can be described as u =
(u1, · · · , uI) ∈ R2IK . With this system setup, the optimisation
problem is defined as:

min
u

∥P agg − ζ∥2
2

s.t. pg,min
i ≤ pg,curt

i ≤ pg,max
i , i ∈ {1, · · · , I}

(3)
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Algorithm 1 MPC(I,K,N) for solar peak-shaving
1: Initialisation: set n := 1
2: while n ≤ N −K + 1 do:
3: Collect measurements: pg

i (n) and pl
i(n)

4: Collect forecast p̂g
i (n) and p̂l

i(n)
5: Compute forecast deviation p̂g

i,dev(n)
6: Collection predictions for future time steps
7: for k ∈ {1, · · · ,K − 1} do
8: Collect p̂g

i (n+ k) and p̂l
i(n+ k)

9: Correct forecast using p̂g
i,dev(n)

10: end for
11: Collect ζ, compute P agg, update constraint matrices
12: Solve problem (3), compute u
13: Modify ui(n) in case of curtailment relaxation
14: Communicate ui(n) with vIEDs to perform control
15: Update ui(n+ k) for k ∈ {1, · · · ,K − 1}
16: n → n+ 1
17: end while

The main workflow of the MPC scheme is presented in Algo-
rithm 1, the for-loop for i is omitted. At each time step, the
nonlinear problem (3) on line 12 is solved using the Python
method scipy.optimise.minimise [11]. Whereas the
benchmark is a linear method that calculates the deviation from
the reference value at each time step and implements con-
trol setpoints for all PV systems in proportion to the nominal
active power (BM_max) or available flexibility (BM_flex).
For instance, a curtailment relaxation mechanism based on a
time-counter has been added to the benchmark method.

4 Test and Results

4.1 Simulation without vIEDs

Before applying the MPC scheme to the virtualised simula-
tion environment, a test without real-time communication to
vIEDs was conducted to investigate the performance of the
MPC solvers. In other words, all data were stored locally
and loaded at each time step when required, representing the
MGM operation on daylight hours, which has a time step
index n ∈ [480, 1020], or 8:00 to 17:00 Central European Sum-
mer Time (CEST, UTC+2). Multiple local tests were carried
out using two solvers for constrained optimisation: Sequential
Least Squares Programming (SLSQP) and trust-region inte-
rior point method (trust-constr) [11], as well as different
sizes for the prediction time windows.

Figure 3 compares the test results using different setups by
assessing absolute deviations from the reference trajectory. In
general, the MPC solvers outperformed the two benchmark
methods, particularly when relaxing the PV curtailments, as
the MPC scheme has better knowledge about the prospective
changes in net power absorption. Notably, a larger prediction
time window had a detrimental influence on the MPC tests. One
possible cause is the cumulative inaccuracy in the solar predic-
tion. In [12], examples are provided to demonstrate that shorter

Fig. 3 Comparison of the deviations using different setups. The
last digit in the tick labels denotes the MPC time window size.

horizons may improve the accuracy of an MPC scheme in terms
of weather-dependent optimisation problems. The MGM ran
on a Windows Server 2012 machine with an 8-core processor.
The computation time is not critical for the test with K = 3
(converged in 2 seconds); as the window size increases, the
required computation time for each nonlinear optimisation step
grows drastically due to the computation incorporating large
sparse matrices.

4.2 Simulation with vIEDs and IEC 61850 Communication

In the next step, the setup with MPC solver SLSQP and the
prediction time window with length K = 3 were applied to the
virtualised simulation environment explained in Section 3.2. At
each time step n, an IEC 61850 data update was performed by
communicating with all vIEDs in a loop. For simplicity, the
predicted values for load and generation over the time window
[n, n+ 2] were assumed to be known for the MGM.

The test with vIEDs has been performed multiple times on a
Network Attached Storage (NAS) with a 3400 MHz proces-
sor and six cores. Most tests could produce expected results,
as shown in Figures 4 and 5, in which the actual aggregated
net power demand is not significantly deviated from the local
test. While in one test, large deviations could be observed start-
ing from time step 950. Considering that the NAS ran into
an out-of-service state at the same time due to critical CPU
and memory usage, these deviations could have been caused
by delayed processing and control execution within the vIEDs.

Fig. 4 Comparison of local MPC tests and one test in the vir-
tualised environment with vIEDs.
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Fig. 5 Direct comparison of net active power absorption using
different solvers and the reference trajectory in the same test as
in Figure 4, outliers are plotted as scatters.

Several other tests showed different scales of non-critical devi-
ations compared to the results collected in the local test, which
could be caused by inconsistent time synchronisation in vIEDs
or restricted computation capacity of the NAS.

5 Conclusion and Outlook

The work presented in this paper has demonstrated an interdis-
ciplinary, novel approach for integrating solar forecast into the
microgrid simulation, combining virtualisation and standardi-
sation aspects. Implementing data interfaces based on the IEC
61850 data structure could improve efficiency on the data man-
agement side. With regard to new flexibility provision options,
a simplified MPC scheme has been developed for MGM to
enable PV peak-shaving utilising solar power forecast. In a
virtualised real-time simulation framework consisting of IEC
61850 compliant vIEDs, the MPC showed a stable performance
despite the limited computation capacity of the host system
for containers. As container technology for virtualisation has
gained popularity in many industrial domains, more practical
container applications for distribution power network simula-
tion could be promising and effective.

Further research is needed in various directions to enhance
the technological feasibility of the proposed microgrid simu-
lation approach. In terms of standardised data modelling, more
DER types should be considered, and arrays can be used to
store forecast data instead of single data points. Regarding
the simulation framework and its components, DER emulators
should be implemented as alternatives to internal data process-
ing logic, artificial communication network impairments can
be applied to imitate real-world disturbances; and instead of
artificially generated data sets, the simulation should be tested
on data sets that do not have temporal mismatch. To tackle the
restrictions of computation capacity, the virtualised simulation
should be performed on a high performance computing system.
From a numerical standpoint, advanced prediction-correction
mechanisms can be used to minimise the impact of forecast
inaccuracies on the MPC scheme; for instance, complex non-
linear problems that consider network stability constraints,
such as OPF, need to be intensively investigated.
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