
A New Modeling Approach for Automated Safety Analysis
Based on Information Flows
Philipp Hönig and Rüdiger Lunde

Hochschule Ulm
University of Applied Sciences
Institute of Computer Science

e-mail: {hoenig, r.lunde}@hs-ulm.de

Abstract
A central challenge in automating failure-related
analysis tasks during a product life-cycle (such as
safety analysis and diagnosis) is the choice of an
appropriate level of abstraction under which the
system is considered. In this paper failure ef-
fects within a practical system including a con-
trol loop are studied. Existing approaches using
quite different levels of abstraction are compared
and partly evaluated. The results motivate a new
modeling approach which we call smartIflow. We
consider components as finite state machines and
provide new concepts for undirected information
exchange between the components and build-in
capabilities for flow direction determination. In-
teresting parts of a model for the example system
demonstrate the syntax. Based on these exam-
ple code fragments important concepts of the new
language are discussed in detail. Though no im-
plementation yet exists, it is shown, that this ap-
proach has the potential to overcome several lim-
itations of existing approaches.

1 Introduction
Safety-critical systems are systems where failures can lead
to substantial material and environmental damage or even to
the loss of life. Such systems can be found in various do-
mains such as control systems in aircraft, medical devices,
or assistance systems in cars. It is essential that the function-
ality of such systems can be guaranteed even in critical sit-
uations. Therefore various analysis techniques are applied
during the development process of those systems to ensure
system safety. Fault Tree Analysis (FTA) and Failure Modes
and Effects Analysis (FMEA) are probably the best-known
analysis techniques. The problem with traditional analytical
techniques is that most of the tasks must be done manually
by engineers. Those traditional techniques consume a lot of
time and effort, which results in higher development costs.
The increasing complexity of systems, shorter product cy-
cles and cost saving in almost all areas require new concepts
and software solutions for safety analysis in an automated
way.

Model-based safety analysis (MBSA) as described in [1]
seeks to overcome these problems by using a formalized
and computer-understandable system model for the various
analysis tasks and also for the development. The incorpo-
rated knowledge of models can be very diverse. Models

can for example include structural information, informa-
tion about failure behavior or functional behavior. The so
called extended system models, which include both, nomi-
nal and failure behavior, can be used for automating parts of
the safety assessment. The knowledge representation of the
model can also vary widely:
• Highly abstracted system models can be created early

in the development process where the exact properties
of the components are not known. These models can
be used to get very early rough information about the
system safety, but they are not detailed enough to get
specific signal values or information about the timing.

• Physical models contain more precise information
about the components used in the system. With these
models, detailed information about timing can be gath-
ered, or the signal value at a specific port can be an-
alyzed. Getting widespread information about safety
leads to high computational effort.

In the last decades several representation formalisms have
been developed, and some of them even are integrated in
commercial tools (Autosteve [2], HiP-HOPS [3], Rodon [4]
or AltaRica [5] to name a few). A central challenge in the
automation of safety and reliability analysis is the choice
of an appropriate abstraction level. Either the abstraction
level is too high and some effects can’t be discovered or
the models are too detailed which results in high modeling
effort and subsequently to high computational effort. This
is also the main problem behind the existing approaches.

In this paper we propose a new modeling formalism based
on information flows which we call smartIflow1. We try to
find an abstract perspective which supports reasoning about
faults and their effects through the whole product life cycle,
starting early at design time and finally including diagnosis.
Since safety assessment is performed early in the life cycle
of a technical system, we first want to demonstrate the ap-
plicability of our models to safety analysis. In this paper we
investigate how our modeling formalism can be used for au-
tomated safety analysis. However, our long-term goal is to
use these models for diagnosis, too.

This paper is organized as follows. In Section 2 some
existing approaches and their principal limitations will be
described briefly. In Section 3 an example system is intro-
duced, and ideas for new modeling approaches are devel-
oped based on a discussion about selected relevant failure
situations. In Section 4 our proposed modeling formalism

1State Machines for Automation of Reliability-related Tasks
using Information FLOWs

will be presented in detail, and afterwards it will be de-
scribed how the situations in the example system are han-
dled by it. A suitable simulation algorithm will be sketched
in Section 5. Finally a short conclusion will be given.

2 Related Work
Current approaches differ in many aspects. One aspect is
the level of abstraction on which the behavior is speci-
fied. Quantitative models will obviously deliver more de-
tailed results than qualitative models. However, at the same
time the modeling effort and also the computational effort
will be much higher. And not all failure situations are
predictable on the very deepest level of abstraction. An-
other distinguishing criterion for component-oriented mod-
eling approaches is the type of connection modeling. The
connections between the components can be directed as in
Simulink2 or undirected as in Simscape3. Finally, there are
different ways how failure behavior can be modeled. Mod-
eling formalisms can roughly be divided into the categories
Failure Logic Modeling (FLM) and Failure Injection (FI)
[6]. In Failure Logic Modeling only the failures and their
propagation through the components of the system are mod-
eled on a high level of abstraction. In FI, a model describing
the nominal behavior of a system is enriched with informa-
tion about component failures. Behavioral descriptions in
FI can, but not necessary need to be, based on physical laws
using a rather low level of abstraction.

HiP-HOPS [3] (Hierarchically Performed Hazard and
Operability Studies) developed by Papadopoulos et al. is
a FLM-based modeling formalism using an extremely high
level of abstraction. In HiP-HOPS for each component a
fault model is created that specifies how a component re-
sponds to internal failures or failures generated by other
components. The connections between the components are
directed and used as channels for the failure propagation.
A component in HiP-HOPS is characterized as a set of ex-
pressions which describes the causes of output failures in
terms of logical combinations between internal failures and
failures on the input of a component. There are some prede-
fined failure classes which can be used in these expressions,
like omission, commission, or timing.

Failure propagation is limited to one failure per connec-
tion which means that only the deviation of one physical
quantity (e.g. flow) can be taken into account. The compo-
nents in HiP-HOPS contain no state variables. Therefore,
it is not possible to specify the failure propagation depend-
ing on the operation mode. Since the connections between
the components are directed, failure situations in which the
causal flows reverse, sometimes even completely unexpect-
edly, can’t be handled.

In addition to HiP-HOPS, there are a number of other in-
teresting approaches and concepts. Failure Propagation and
Transformation Notation (FPTN) [7] is very similar to HiP-
HOPS, however instead of a textual representation, FPTN
uses a graphical notation to specify the failure behavior of a
component on a high level of abstraction. AutoSteve [2] is a
commercial tool that performs automated design analysis of
electronic circuits based on functional abstraction and quali-
tative simulation. Rodon [4] is another commercial tool that
uses a component-oriented and object-oriented language to

2www.mathworks.com/products/simulink
3www.mathworks.com/products/simscape

model the behavior of the system. Behavior prediction is
based on constraint propagation, and a Reason Maintenance
System (RMS) enables focused search for possible causes
of undesired events. Struss and Dobi presented in [8] an
approach to automated safety analysis based on qualitative
models. They use deviation models [9] to describe incorrect
behavior. A deviation model captures the deviation from the
reference state on a high level of abstraction by using only
a few signs. The AltaRica [5] formalism describes systems
with a set of nodes. Each node has a finite number of state
and flow variables. State transitions are triggered by events.

In addition, there are a number of approaches which are
fundamentally based on model checking. In the approach of
Joshi et al. [1], the nominal system model is enriched with
failure behavior. This extended system model is translated
into the input language of the SMV model checker. The
safety requirements are specified in some temporal logic
(CTL/LTL), and the model checker verifies whether the
model fulfills these requirements. If the model doesn’t fulfill
the requirements, the model checker automatically gener-
ates a counterexample. These approaches have been investi-
gated in [10]. The following table summarizes the discussed
approaches:

Approach Level of Ab-
straction

Connection
Modeling

Failure
Behavior

HiP-HOPS extremely high directed FLM
FPTN very high directed FLM
Joshi et al. low-high directed FI
AutoSteve high undirected FI
Rodon low undirected FI
Dev. Models high undirected FLM
AltaRica low-high undirected FI

Using physical system models for safety analysis delivers
very detailed results. However, the search space can grow
very fast, and thus we will often need more abstraction to
reach a satisfactory level of completeness with acceptable
computational efforts. HiP-HOPS is the extreme opposite
of physical modeling. The modeling formalism is very sim-
ple but at the same time also very limited. We are searching
for a modeling formalism whose level of abstraction lies be-
tween HiP-HOPS and physical modeling. Anyway, without
practical studies, it is not clear which of the listed principal
limitations turn out to be grave in practice.

3 Discussion Based on a Practical Example
At first glance, HiP-HOPS seems to be a very attractive high
abstraction level approach to automated safety analysis and
related applications. Naturally, the simplified view on sys-
tems under analysis comes with limitations regarding the
accuracy of predicted cause effects. But how are modeling
costs and accuracy of results balanced in practice?

We will now take a look at an example system contain-
ing a control loop. By focussing on selected relevant faults
and their effects we try to get a practical understanding of
the limitations of HiP-HOPS and other approaches. From
this analysis, suitable concepts will be derived to overcome
those limitations.

Figure 1 shows the structure of a simple cooling sys-
tem. The cooling system is responsible for cooling down

hot HNO3 (nitric acid) to a safe temperature T. This is
achieved by using a heat exchanger that takes cool water
to cool down the hot fluid. For energy saving reasons, the
cooling water supply can be reduced. A controller measures
the temperature of the out-flowing fluid and controls valve
V2 depending on the measured data. The aim of the con-
troller is to keep the temperature of the nitric acid in a pre-
defined range. A safety system consisting of a flowmeter
and valve V1 blocks the hot fluid if the amount of inflowing
water drops under a certain threshold. The cooling system
operates in one of the following operation modes:

a) Cooling mode: Normal operation mode.

b) Maintenance mode: Valve V1 is closed and Circulation
Pump is switched off.

Hot HNO3

Controller

Cooling Water

Temp.
Sensor

Valve V2

Cold HNO3

Heat-
exchanger

T

Circulation
Pump

F

Flowmeter

Safety-
system

Valve V1

Cooling Water
Drain

Figure 1: The cooling system (Source: [11])

The cooling system contains some non-trivial failure sit-
uations which a modeling formalism should be able to ex-
plain. Due to the lack of space we only take a detailed look
at the three most interesting ones:

1. A StuckAtClosed-failure of valve V2 will lead to the
situation that no or not enough cooling water will flow.
The flowmeter as part of the safety system detects this
situation and closes valve V1 to avoid the rising of the
fluid temperature above a critical threshold. In this
case, the failure of V2 has an indirect influence on the
flowmeter and thus also on V1.

2. An internal failure inside the controller leads to an un-
determined flow of the cooling water, because the po-
sition of the valve is not set properly. Therefore there
might not be enough cooling water to cool down the
hot fluid.

3. The circulation pump is provided with too much volt-
age which results in a high pressure of the cooling wa-
ter. The heat exchanger is unable to deal with the pres-
sure which results in a leakage.

To enable automated safety analysis, the system be-
havior needs to be modeled in a formal and computer-
understandable language. In general, systems are com-
posed of multiple interconnected components. To make be-
havioral models reusable component-oriented modeling is a
key. Component type models specify the common behavior
of components which are equal with respect to the chosen
abstraction level. Usually, those type models provide typed

ports which define the interface for interaction with other
components. System models (which themselves can be used
as component type models, on a higher level within a com-
ponent hierarchy) are created by connecting ports of instan-
tiated type models. For component-oriented modeling, it
is essential to formulate behavior in a context-independent
way. Obviously, with increasing level of abstraction, this
becomes more and more difficult. HiP-HOPS for example
annotates Simulink components with failure propagation in-
formation. Hence, behavior is specified on component level.
But since propagation rules for heavily abstracted failures
are by their nature context-dependent, different specifica-
tions are needed for the same component type. HiP-HOPS
solves the problem by assigning the annotations to compo-
nent instances instead of component types.

The StuckAtClosed-failure of valve V2 in the first use
case has extensive consequences to all components that are
attached along this line. On one hand the heat exchanger
receives not enough cooling water, but on the other hand
the flowmeter detects that there is no flow of cooling water
and therefore valve V1 is closed. Using directed connec-
tions for exchanging information between the components
like in HiP-HOPS leads to the problem that every time the
cause-effect relationship may reverse, artificial connections
must be introduced. Such situations often occur unexpect-
edly. Therefore it is almost impossible to capture all these
situations in the model. Actually, such situations should be
detected automatically and not manually by the safety en-
gineer. In our example, it is necessary to create an addi-
tional connection from valve V2 to the flowmeter. These
additional connections lead to very complex models which
are hard to maintain. To avoid this additional modeling ef-
fort, the components must be connected using undirected
connections, and the flow must be determined dynamically
based on the network structure and component behavior.
Since quantitative flow predictions are not in our focus here,
it might even be sufficient to integrate a simple flow analy-
sis mechanism which combines state-dependent connection
information with knowledge about a limited set of built-in
component behaviors (e.g. drain, source, bipolar source).

In the early stages of the development process, only a
sketch of the system architecture is available. The detailed
behavior and the properties of the individual components
are unknown. Therefore, it is not possible to model the sys-
tem on a quantitative level and to predict the exact behavior.
In addition, calculating the system behavior on a quantita-
tive level would also require to test all possibilities, which
quickly leads to state space explosion. Thus the behavior
of the components need to be modeled qualitatively on a
high level of abstraction. HiP-HOPS uses connections as
channels to propagate failure effects like "too much of this"
(commission) or "not enough of that" (omission). But prop-
agation is limited to just one effect per connection. In the
example system, this is insufficient, since deviations of sev-
eral physical quantities, namely temperature and flow, play
an important role in the failure model. In addition, the avail-
able failure classes are sometimes insufficient. For example,
it is very hard to explain an excessive temperature in terms
of omission respectively commission.

Another possibility to abstract from the physical conduc-
tor is to consider the connections between components as
information channels. The information shared by the com-
ponents can be very diverse. On the one hand it can be in-

formation about the flow (low/high) and on the other hand
also about the temperature (cold/hot). Each component is
able to read and to modify the information on the channel
the component is connected to. Depending on the shared in-
formation, a component may change its operational mode or
modify (add, remove, update) the information on the flow.
In the second use case the internal failure of the controller
leads to an uncontrolled flow of the cooling water, and thus
the temperature of the fluid will be undetermined. In this
case it is not enough just to talk in terms of "high flow" or
"no flow", because the controller (and the valve) can behave
in a multitude of faulty ways. For example, the controller
might cause the valve to open (close) completely or to be
stuck in an intermediate position. To be correct, it would
be necessary to consider all failure modes in the component
description of the controller, which results in a high mod-
eling effort. A similar problem occurs when modeling the
nominal behavior of the controller. It is very difficult to re-
produce the behavior correctly on an abstract level, because
it can lead rapidly to the situation that the actual behavior
is replicated one-to-one in the model. In many cases it is
not necessary to reproduce the behavior in any way, but it is
more important to know whether the output is correct. In-
stead of trying to reproduce the behavior of the controller, it
could be sufficient to indicate that the controller has a mal-
function and thus the state of the valve is not regulated. The
information about the correctness of an output must be prop-
agated through the information channels, as well. Though
we can not make quantitative statements about the temper-
ature of the liquid, we at least know that it is not regulated.
Deviation models seem appropriate for this purpose.

In the third use case, the circulation pump is supplied
with too much electricity, which results in overpressure in
the conduit to the heat exchanger. Since the coupling of the
components is not designed for such high pressure, this may
inflict a leakage somewhere. We can not predict where ex-
actly the leakage is occurring, because to do so the exact
characteristics of the components must be known, which is
not the case in the beginning of the development. Exact re-
sults can be obtained only by testing with real hardware. In
the early stages of development, it is entirely sufficient to
know which components might be affected and which ef-
fects arise in the respective situations. Non-deterministic
behavior can’t be handled in HiP-HOPS. One possible way
to get a grip on the non-deterministic behavior is to inform
all affected components by sending a property downstream
across the flow, starting at the pump. Components down-
stream listen to the property and choose between two possi-
ble reactions: Stay in OK mode or change to leakage failure
mode.

Usually a component has more than one failure mode. For
example, the valve in the example system might be stuck
in open, closed or in any other intermediate position. Ob-
viously the behavior in the different failure modes varies
widely. Therefore, the modeling formalism should provide
a mechanism to distinguish between failure modes of a com-
ponent and the according behavior. This concerns not only
the failure behavior of a component, but also the nomi-
nal behavior. In HiP-HOPS the components have no states
which becomes a problem when the system operates in the
maintenance mode. If the system is operated in the mainte-
nance mode, the circulation pump is turned off, and hence
there is no flow of cooling water. The inflow of the hot liq-

uid is also interrupted. In this case, a failure situation in
valve V2 is non-critical due to the fact that there is no flow
of hot fluid. HiP-HOPS will indicate this situation as a haz-
ard because there is no distinction between the two opera-
tion modes. Therefore, the behavior of a component must
be described depending on the internal state. The state of
a component can be changed through internal or external
events.

4 Automated Safety Analysis Based on
Information Flows

Based on the results of the analysis of the practical example
we developed a new modeling formalism called smartIflow.
In this section we want to present our conceptual descrip-
tion language and the concepts behind it. The component
descriptions of the controller and valve from the practical
example might look as follows:

1 class Valve {
2 Ports:
3 Fluidal p1, p2;
4 LogicalInput in1;
5 States:
6 Enum[Open, Closed, Controlled,
7 Uncontrolled] s = Controlled;
8 Enum[Ok, StuckAtOpen,
9 StuckAtClosed] fm = Ok;

10 Transitions:
11 when(in1.val == Open && in1.dev == False &&
12 fm == Ok || fm == StuckAtOpen) {
13 s = Open;
14 }
15 ...
16 when(in1.val == Controlled &&
17 in1.dev == False && fm == Ok) {
18 s = Controlled;
19 }
20 when(in1.dev == True) {
21 s = Uncontrolled;
22 }
23 Behavior:
24 if(s == Open) {
25 connect(p1, p2);
26 }
27 if(s == Uncontrolled) {
28 connect(p1, p2,
29 [flow.val=Controlled, flow.dev=True]);
30 }
31 if(s == Controlled) {
32 connect(p1, p2, [flow.val=Controlled]);
33 }
34 }
35 class Controller {
36 Ports:
37 LogicalInput sensorValue;
38 LogicalOutput outputValue;
39 States:
40 Enum[Ok, Failure] fm = Ok;
41 Enum[Controlling, UndetectedInputFailure,
42 FailSafe] om = Controlling;
43 Transitions:
44 when(sensorValue.dev == False) {
45 om = Controlling;
46 }
47 when(sensorValue.dev == True) {
48 om = UndetectedInputFailure
49 or FailSafe;
50 }

51 Behavior:
52 set(outputValue, [val=Controlled]);
53 if(fm == Failure ||
54 om == UndetectedInputFailure) {
55 set(outputValue, [dev=True]);
56 }
57 }

The basic idea behind our approach is to consider each
component in the system as a finite state machine. We pro-
vide mechanisms for undirected information exchange be-
tween the components and for flow direction analysis. In
fact, our approach follows the principle of Discrete Event
Systems (DES). A DES is characterized by a discrete state
space that changes only at a discrete set of points in time
[12]. While traditional DES-based approaches such as the
methodology of Sampath et al. [13] use manually defined
events to describe the interaction between the components,
in our approach the components exchange signal values in-
stead of events. Events are generated within the receiving
component based on signal changes. Thus, one essential
distinguishing criterion is the way in which the components
interact. In addition our modeling formalism is completely
component-oriented.

Keep in mind that this is only a first draft of our modeling
formalism; there are still some open questions. Nevertheless
we want to take a closer look on the concepts used in our
modeling formalism.

4.1 Compositional Modeling
The proposed language is component-oriented and object-
oriented (though inheritance is not discussed here). For each
component type a separate class is created. Similar compo-
nents only need to be modeled once, because the classes can
be instantiated several times. Component instances can be
part of other components as well, to build hierarchical sys-
tems. A class consists of a unique name and a set of sections,
where each section describes a different aspect of the com-
ponent. The following sections can be used in a component
description class: States, Ports, Components, Transitions,
and Behavior.

4.2 Ports and Connections
The component-oriented perspective considers systems as
a set of components that are interconnected. Connection
points between the components are called ports. A port dec-
laration consists of a type and a name which must be unique
within a component. There will be a set of predefined port
types for the most common domains (e.g. electrical, fluidal
or mechanical), but it is also possible to define custom port
types. Directed connections can also be created by using
special port types, namely LogicalInput and LogicalOutput.
This kind of ports is useful if the flow is restricted to one
direction (e.g. see valve model). Special built-in elements
for sinks and sources are available to determine the flows in
the system. Connections between the components are mod-
eled as passive channels, which means that information ex-
changed by the components is not modified during the trans-
mission [14].

In our example, the component description of the valve
contains three ports: Two ports of type Fluidal where the
liquid is flowing through, and one port of type LogicalInput
where the control signal is received.

4.3 States
As already said, the behavior of a component depends on the
operational mode. In order to capture the states of a com-
ponent, each component can include one or more state vari-
ables. States variables are private, which means that they are
only visible inside the component itself. The definition of a
state variable consists of a finite domain (typically an enu-
meration of symbolic values), a name, and an initial value.
For instance, the component characterization of the valve
contains two state variables: one for nominal and one for
the failure behavior. The valve can be in state Closed, Open,
Controlled, or Uncontrolled. The behavior of the compo-
nent depends on its current state.

4.4 Transitions
Components change their internal states based on the infor-
mation shared with other components. These state transi-
tions could either be integrated into the behavior descrip-
tion or be modeled separately. Although integration into the
behavior description would lead to a more compact repre-
sentation, we decided to separate the state transitions from
the behavior, for the sake of clarity. In the section Tran-
sitions it is described how a component changes its state.
State transitions are specified by when-clauses followed by
assignments to at least one state variable. A when-clause
contains a logical expression which consists of comparisons
between symbolic values and all kinds of variables includ-
ing propagated properties. The syntax for relational opera-
tors (==, !=) and logical operators (||, &&, !) is well known
from programming languages like Java. During simulation
transitions are triggered when the value of the expression
changes from false to true. The Transitions section encapsu-
lates all aspects of indeterminism. Different semantics (syn-
chronous/asynchronous transition models) can be used. Ad-
ditionally, state variable assignments can be indeterministic
too (see the second transition in the controller example).

4.5 Qualitative Behavior Description
Our analysis of the practical example has shown, that the
level of abstraction of HiP-HOPS is too high and inflexible.
In smartIflow we describe the behavior on a lower level of
abstraction by focussing on the flows between the compo-
nents and the information they exchange with each other.
As already described, the behavior of a component depends
on its internal state. Therefore, the behavioral description
of a component consists of a set of conditional branches,
in which the behavior of the respective state is described.
A condition is composed of logical combinations between
state variables and their characteristics. Here, the same re-
lational operators and logical operators can be used as in
the state transitions. In the conditional statements of the
behavior description only state variables are permitted. A
conditional branch that is always true (if(true)) can be
omitted. The functions inside such a block can be declared
directly in the section Behavior.

The behavior of a component is described in terms of mo-
difications to the network structure and property publication
through the network. Two ports can be connected by the
function connect. This allows a flow through the compo-
nent. If there should be no flow, the connect statement can
be omitted. The behavior of a valve can be easily modeled
by connecting the two ports in the state Open, while in the
state Closed the ports are disconnected which interrupts the

flow. The flows in the system will then change according to
the component’s state.

Only specifying the flow is sometimes not sufficient. In
our example, the valve is controlled by the controller. We do
not know exactly how the valve will behave, but we might
know whether the input from the controller is correct or not.
For this reason, it is possible to enrich the flow with addi-
tional properties, which can be read by subsequent compo-
nents within their transitions sections. A property specifi-
cation has the structure "path=value". The path specifies
the quantity for which the information is specified (e.g. the
pressure at a port). A path consists of a set of path elements
separated by "." and a closing element which can be either
val, dev, or dir. The closing element val is used to spec-
ify physical quantities or logic signals. dev is used to spec-
ify a deviation from the nominal behavior. Property name
flow.dir is reserved for the built-in flow direction determina-
tion. Paths can also be empty, which means that they only
consist of a val or dev element. To enrich the flow with addi-
tional information, one or more properties can be provided
to the connect function. Additionally, function set allows
to publish information without network topology modifica-
tion.
In the example system the valve will change its state to
Uncontrolled if the output of the controller deviates from
the nominal behavior. Therefore, the flow through the
valve will also deviate, which is indicated by the property
flow.dev=true. For the state Closed there is no behavior
specified since a closed valve blocks the flow on both ports.

5 Analysis Algorithm
We plan to test different analysis algorithms. A possible
starting point could be a state transition tree exploration al-
gorithm as sketched below:

1: open-nodes = empty set
2: closed-states = empty set
3: open-nodes← node for initial system state 4

4: while open-nodes is not empty do
5: node = remove a node from open-nodes
6: if state(node) not in closed-states then
7: reconfigure network according to state(node)
8: determine flows and propagate properties
9: compute possible next states

10: for each possible next state do
11: open-nodes← new corresp. successor-node
12: end for
13: closed-states← state(node)
14: end if
15: end while

Since we are interested in all possible system reactions to
certain failures, the outcome of behavior prediction cannot
just be a sequence of (possibly time-stamped) system states,
as it is the case in typical simulation tools. Instead, a tree
of nodes is created in which each node corresponds to one
system state, and each successor-link to one possible state
transition (see Figure 2). The root of the tree corresponds to
the initial system state, and leafs to situations, whose suc-
ceeding situations either do not exist (terminal states) or can
already be looked up somewhere else in the tree.

4In this context "←" stands for an add operation

The presented algorithm is in principle depth-first search
(DFS). The variable open-nodes marks parts of the tree
whose successors still need to be analyzed. The variable
closed-states is used to avoid loops and thus to guarantee
termination. Behavior prediction basically consists of three
main steps, namely network reconfiguration, flow calcula-
tion, and successor state computation.

In the network reconfiguration step the commands in the
Behavior sections are executed depending on the actual val-
ues of the state variables. Commands can establish addi-
tional connections and assign properties to connections and
ports.

In the flow calculation step, the directions of flows are de-
termined using the current connection structure and knowl-
edge about build-in primitives. It is assumed that a flow will
always select the shortest path from a source to a sink. Prop-
erties are then propagated through the network, partly based
on the analyzed flow directions. We take into account that
this simplified view can lead to ambiguities.

In the last successor state computation step, all possible
state transitions are evaluated. The set of all possible suc-
cessor states depends on properties shared with other com-
ponents, the direction of the flows through the component
ports, and the actual values of component state variables.
Since we consider the system behavior on a high level of
abstraction, it is of course impossible to get detailed infor-
mation about the timing.

...

sensor1.fm = InternalFailure
v2.s = Controlled
v2.fm = Ok
controller1.om = FailSafe
...

sensor1.fm = InternalFailure
v2.s = Controlled
v2.fm = Ok
controller1.om = UndetectedInputFailure
...

sensor1.fm = InternalFailure
v2.s = Uncontrolled
v2.fm = Ok
controller1.om = UndetectedInputFailure
...

sensor1.fm = InternalFailure
v2.s = Controlled
v2.fm = Ok
controller1.fm = Ok
...

... ...

Figure 2: Excerpt of the state tree of the cooling system

6 Conclusion
Our initial goal was to develop a formalism for describing
failure behavior of systems on an as-high-as-possible level
of abstraction without loosing the advantages of context-
free component-oriented modeling, and without loosing too
much prediction power. We started with HiP-HOPS, a mod-
eling formalism that focuses on failure propagation using an
extremely high level of abstraction. The experiments with
the practical example showed that approaches relying solely
on failure propagation lead to hardly maintainable models
with limited options for reuse. In fact, HiP-HOPS binds
failure propagation models to instances of components in-
stead of component types. Therefore, we identified several
concepts to specify situations which HiP-HOPS is unable to
describe. We also proposed a new formal language called

smartIflow that integrates these concepts. Although the re-
sulting component descriptions grew larger than intended,
still the modeling effort is on an acceptable level.

At first glance it seems that we ended up with our for-
malism almost at the abstraction level of AltaRica, but there
are some essential differences. In AltaRica, information ex-
change between components is based on synchronized typed
variables which are called flow variables. Our approach also
relies on typed variables (which we call ports), but the type
(e.g. Fluidal) does not limit the propagated values. This
leads to low coupling between senders and receivers within
a network. Property propagation and flow direction determi-
nation together enable our formalism to send informations
downstream in the direction of the actual flow. We believe
this feature to be crucial for handling situations with unfore-
seen flow direction changes.

7 Future Work
Up to now, we focused on theoretical experiments with our
modeling formalism. To verify the practical applicability,
one of the next steps will be the implementation of a proto-
typical simulation framework. We also plan to extend our
modeling language by additional aspects of object oriented
languages (e.g. inheritance, visibility modifiers or generic
classes). Finally, more challenging applications will be used
to validate our formalism on a larger scale.

References
[1] Anjali Joshi, Mike Whalen, and Mats P.E. Heimdahl.

Modelbased safety analysis: Final report. Technical
report, 2005.

[2] Chris Price. Autosteve: Automated Electrical Design
Analysis. In Werner Horn, editor, ECAI, pages 721–
725. IOS Press, 2000.

[3] Yiannis Papadopoulos and John A. McDermid. Hier-
archically Performed Hazard Origin and Propagation
Studies. In Proceedings of the 18th International Con-
ference on Computer Computer Safety, Reliability and
Security, SAFECOMP ’99, pages 139–152, London,
UK, UK, 1999. Springer-Verlag.

[4] Karin Lunde, Rüdiger Lunde, and Burkhard Münker.
Model-Based Failure Analysis with RODON. In Pro-
ceedings of the 2006 Conference on ECAI 2006: 17th
European Conference on Artificial Intelligence August
29 – September 1, 2006, Riva Del Garda, Italy, pages
647–651, Amsterdam, The Netherlands, The Nether-
lands, 2006. IOS Press.

[5] André Arnold, Gérald Point, Alain Griffault, and An-
toine Rauzy. The AltaRica Formalism for Describing
Concurrent Systems. Fundam. Inf., 40(2,3):109–124,
August 1999.

[6] O Lisagor, J A McDermid, and D J Pumfrey. To-
wards a Practical Process for Automated Safety Anal-
ysis. 2006.

[7] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J.
Pumfrey. Towards Integrated Safety Analysis and De-
sign. SIGAPP Appl. Comput. Rev., 2(1):21–32, March
1994.

[8] Peter Struss and Sonila Dobi. Automated Functional
Safety Analysis of Vehicles Based on Qualitative Be-
havior Models and Spatial Representations. In The

24th International Workshop on Principles of Diagno-
sis (DX-2013)., pages 85–91, 2013.

[9] Peter Struss. Deviation Models Revisited. In In:
Working Papers of the 15th International Workshop on
Principles of Diagnosis (DX-04)., 2004.

[10] Philipp Hönig. Automated Safety Analysis of Tech-
nical Systems based on Component-Oriented Models.
Master’s thesis, Hochschule Ulm, University of ap-
plied Sciences, Ulm, 2013.

[11] Eike Schwindt. Gefahrenanalyse mittels Fehlerbaum-
analyse, 2004.

[12] Jerry Banks, John S. Carson II, Barry L. Nelson, and
David M. Nicol. Discrete-Event System Simulation.
PEARSON, 2010.

[13] M. Sampath, Raja Sengupta, S. Lafortune, K. Sin-
namohideen, and D.C. Teneketzis. Failure diagnosis
using discrete-event models. Control Systems Technol-
ogy, IEEE Transactions on, 4(2):105–124, Mar 1996.

[14] Peter Struss. Modellbasierte Systeme und qualita-
tive Modellierung. In Günther Görz, Claus-Rainer
Rollinger, and Josef Schneeberger, editors, Handbuch
der Künstlichen Intelligenz. Oldenbourg, 2000.

