
Formal Verification of Technical Systems
using smartIflow and CTL

Philipp Hönig
Hochschule Ulm

University of Applied Sciences
Institute of Computer Science

hoenig@hs-ulm.de

Rüdiger Lunde
Hochschule Ulm

University of Applied Sciences
Institute of Computer Science

r.lunde@hs-ulm.de

Florian Holzapfel
TU München

Institute of Flight System
Dynamics

florian.holzapfel@tum.de

ABSTRACT
Verification of safety requirements is one important task
during the development of safety critical systems. The in-
creasing complexity of systems makes manual analysis al-
most impossible. This paper introduces a methodology for
formal verification of technical systems with smartIflow. Ex-
isting approaches mainly use existing model checking tools
for this task. Due to the bidirectional connection model-
ing, this is not feasible for smartIflow models. Our proposed
two-step method first predicts the system behavior. In the
second step, safety requirements specified in CTL are ver-
ified, and counterexamples are generated if these are not
satisfied. We describe the usage of CTL formulas verified
against safety critical complex systems modeled with smar-
tIflow. The practical applicability is shown using a simple
example system.

Categories and Subject Descriptors
B.8.1 [Hardware]: Reliability, Testing, and Fault-Tolerance;
I.6.2 [Computing Methodologies]: Simulation Languages

General Terms
Algorithms, Reliability, Languages

Keywords
Model-Based Safety Analysis, smartIflow, FSM, DES, Model
Checking, CTL, LTL

1. INTRODUCTION
During development of safety critical systems serveral anal-

ysis tasks like FMEA (Failure Mode and Effects Analysis),
FTA (Fault Tree Analysis) or CCA (Common Cause Anal-
yse) are performed [5]. Besides that, safety engineers often
verify the correctness of systems using safety requirements
specifications. Performing this task manually can be time
consuming and error prone since every system reaction to
failures or external inputs have to be predicted. SmartIflow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIT ’16, Oct. 6 – 8, 2016, Aizu-Wakamatsu, Japan.
Copyright 2016 University of Aizu Press.

(State Machines for Automation of Reliability-related Tasks
using Information FLOWs) [7] has been designed to auto-
mate the safety analysis process. The modeling formalism
behind smartIflow is on a quite high level of abstraction.
Due to the bidirectional connection modeling and the flexi-
ble property mechanism, the predictive power of smartIflow
is quite high. Our previous experiments with smartIflow
have shown that the level of abstraction offers a good com-
promise between computational effort and predictive power.
However, in these experiments only specific scenarios (e.g.
reaction to a broken pipe) were simulated. Existing ap-
proaches like AltaRica3 [3] or deviation models[11] use a
similar level of abstraction, however, with less expressive-
ness (e.g. there are no built-in elements for flow direction
determination).

This paper describes an approach for automated verifica-
tion of technical system with smartIflow. The objective is to
automatically verify a safety specification against a system
model. In that context the following questions arise:

• How can such requirements be described in a formal
language?
• How can the simulation be controlled to capture all

relevant sequences of events?
• How might a verification result look like?

We will answer these questions by introducing our new ver-
ification method which is based on temporal formulas. It is
being studied whether and how model checking techniques
can be used.

This paper is organized as follows. The following section
briefly summarizes the modeling concepts behind smartI-
flow. In Section 3 some fundamental model checking con-
cepts are described. Existing approaches supporting formal
verification of safety requirements are described briefly in
Section 4. In Section 5 the automated verification of safety
requirements with smartIflow will be explained. The results
of our experiments with a small example system are shown
in Section 6. Finally a short conclusion will be given.

2. THE SMARTIFLOW FORMALISM
The modeling formalism behind smartIflow is object- and

component-oriented. Figure 1 visualizes the component model
of a 3-position valve. Basically, each component in a system
is considered as finite state machine. Thus a component
consists of a set of state variables that are used to capture
the operational and failure modes of a component. State
changes are either performed after events or signal changes
on ports initiated by other components. Events are used



om == Pos1 ? 

om == Pos2 ?

Events

ThreePositionValve

in1

p0

p2

p1

om

Closed

Pos1 Pos2

fm==Ok && 
input == CMD.Pos1

Figure 1: Sketch of a smartIflow component

to stimulate a system externally, for example to change the
operational mode of a component. Ports represent the con-
nection points of a component. There are two groups of port
types, namely logical ports (e.g. input or output), and phys-
ical ports (e.g. for undirected electrical connections). Com-
ponents are linked through these ports. The state-dependent
behavior is described in terms of modification of the connec-
tion structure and also by property propagation through the
network. Actually, properties are key-value pairs that pro-
vide a quite flexible mechanism to abstract from physical
flow information. Connections are modeled as undirected
channels in case of physical conductors, and there are also
unidirectional channels for logical signals. Built-in primi-
tives enable flow direction determination. The information
about flow direction is available at each port by means of a
reserved property (e.g. flow.dir=IN ). Models in smarIflow
can be composed graphically in Simulink/Simscape as we
showed in our previous work [8].

3. MODEL CHECKING
Model Checking [2] describes the process of verifying a

system model M against a specification φ. The objective
is to proof whether M fulfills the specification φ. In other
words: M � φ? This verification is performed fully au-
tomatically. System models describe the possible system
behavior in a formal way. Finite state machines or transi-
tion systems are often used for behavioral description. The
verification algorithm systematically explores all states and
tries to disprove the specification. If the model doesn’t fulfill
the specification, the algorithm will deliver a counterexam-
ple, i.e. a trace of the system behavior that falsifies the
property. However, most model checking tools like NuSMV
deliver only one counterexample even though there could
exist more [1].

3.1 Linear Temporal Logic
Most model checking tools allow specifications to be ex-

pressed in temporal logics, like LTL or CTL. LTL (Linear-
time temporal logic) [9] allows to create formulas about fu-
ture paths. Consequently, besides the usual logical operators
(¬,∨,∧,⇒ and ⇔) and operators for atomic expressions
(==, ! =, <=, ...) there is also a set of temporal Operators:

• Xφ: φ has to hold in the neXt state
• Gφ: φ has to hold at each state of the subsequent path

(Globally)
• Fφ: φ has to hold somewhere on the subsequent path
• ψUφ: ψ has to hold Until φ holds
• ψRφ: φ has hold up to the moment when ψ becomes

true (Release)

An example for the safety specification ”Every occurrence
of an event is eventually followed by an action” expressed in
LTL might look like as follows: G(event ⇒ F(action)).

3.2 Computation Tree Logic
In contrast to LTL, CTL (Computation Tree Logic) al-

lows to create statements about states of trees. Therefore
CTL provides besides logical operators a set of temporal
connectives. Each temporal connective is a pair of symbols.
The first symbol specifies the path quantifier which is either
A (along All paths) or E (there Exists at least one path).
The second symbol stands for a set of temporal operators
namely X (at the neXt state), F (at a Future state) and
G (at all future states, i.e. Globally). The combination
of these two symbols defines the most important operators
(EX, EF, EG, AX AF and AG) to specify properties that
take into account the non-deterministic behavior of a sys-
tem. Consider the following property: ”It’s always possible
that state P occurs and holds for the rest of time”. This may
be expressed in CTL with the formula AF(EG(P)). Figure
2 shows two example systems that fulfills AFφ respectively
AGφ.

Figure 2: CTL: Examples

The expressiveness of LTL and CTL is quite different.
There is an overlap, however, there are statements that can
be expressed in CTL but not in LTL and vice versa. One
should note that for instance NuSMV cannot generate coun-
terexamples for all kind of CTL specifications [1].

4. RELATED WORK
Most approaches towards formal verification of safety re-

quirements that can be found in literature utilize temporal
logic and existing model checking tools. Joshi et al. proposes
an approach based on Simulink and NuSMV model checker
[10]. System models created in Simulink are extend with an
fault model by using failure effect modeling. This so called
extend system model is translated into the input language
of the NuSMV model checker. In principle, Simulink is just
used as alternative (graphical) representation for NuSMV
models. Safety requirements specification created in CTL
are used to verify the system behavior. If the system does
not fulfill the specification, one counterexample with a trace
of states that violated the specification is created.

The SLIM (System Level Integrated Modeling Language)
language was developed by the COMPASS (Correctness,
Modeling project and Performance of Aero space Systems)
project for modeling hardware and software systems for safety-
related tasks [4]. Their framework supports several analysis
methods, among others, generation of FMEA tables, fault
tree analysis, and correctness verification. Again, NuSMV is
used as fundamental platform for the various analysis tasks.
System models in SLIM are translated into the input lan-



guage of NuSMV and temporal logic is used for requirements
specification.

Another approach based on model checking has been in-
troduced by Güdemann et al. [6]. System models are con-
structed in SAML (Safety Analysis and Modeling Language)
which can be translated in several analysis tools like NuSMV
or PRISM. This approach allows both, qualitative and quan-
titative analysis.

5. FORMAL VERIFICATION OF SAFETY
REQUIREMENTS

As described in the previous section, most approaches uti-
lize existing model checking tools like NuSMV. This is obvi-
ously not feasible for smartIflow models, among other, due
to the bidirectional connection modeling and flow direction
determination. The input languages of existing model check-
ers don’t provide such features, and because of that using
existing model checker by translating smartIflow models in
the input language of them is not possible. For this reason,
we developed a model checking algorithm for smartIflow.
Most model checking tools explore the system behavior de-
pending on a requirements specification and try to disprove
the specification. In our approach this is split up into two
parts. First, the system behavior is simulated, and in the
second step the specification is verified. This uncoupling has
the great advantage that the verification is not dependent
on the kind of simulation. Conversely, various specifications
can be checked without re-simulating the system. However,
this two-step approach may lead to problems when trying to
keep search space small (e.g. only predict nominal behavior),
because in that case we cannot profit from the specification.
Both steps are now described in detail below.

5.1 Behavior Prediction

s = initial system state;
Q = ∅; // Open state nodes
Result = ∅; // Processed state nodes
add(Q,s) ;
while Q not empty do

u = Q.remove() // Remove first item
reconfigure network according to state(u);
determine flows and propagate properties;
v = compute possible next states;
foreach possible next state e in v do

if e not in Result then
Q.add(e);
Result.add(e);

else
create reference to existing state node;

end
if executeEvent(e) then

next-states = execute admissible events;
Q.addAll(next-states);

end
end

end
Algorithm 1: Behavior Prediction

Algorithm 1 describes the fundamental steps for behavior
prediction. After a initialization phase, where all state vari-
ables are set to their default value, the subsequent system
states can be predicted. A single simulation step basically
consists of four substeps. During the network reconfig-
uration, connections are created and properties are pub-
lished depending on the values of the state variables. After

that, flow directions are determined and properties are
propagated. Thereafter, state variables are updated de-
pending on the current state variable values and port prop-
erties. In case of non-deterministic transitions, the result
of this substep will be a set of subsequent system states.
System states that already have been simulated previously
get a reference to the existing state. Therefore, such states
don’t have to be simulated further, which reduces the com-
putational effort, and also the total number of system states.
Since we are interested in all possible system reactions on
failures or input events, we have to stimulate the system
using events at certain system states. We cannot execute
events of a system in all possible combination at each state
since this would lead to state-space explosion. This is also
completely unnecessary, because there are a lot of constel-
lations which can not occur in reality (e.g. several events at
the same time). For this purpose we have developed a formal
language that enables to describe the permissible combina-
tions of events at a state node. For instance, events can
be restricted to a special type or the number of events of
a specific type (e.g. failure events) can be limited. Due to
space limitations we cannot go into detail on the syntax and
semantics of the language. Events are triggered only in cer-
tain states (e.g. stable state or alternating state). Therefore
for each new expanded state node it is first checked whether
events shall be triggered at all. After that, all possible events
with respect to event specification are added to the state
node and the possible subsequent states are determined.

A simulation result is a directed graph in which each node
corresponds to one system state. Nodes reference other
nodes, states do not reference states. Transitions which are
caused by external events are labeled with a unique identifier
of the event. Figure 3 shows a possible outcome of behavior
prediction.

2 3

4

7

5

6

8 10

9

1

Figure 3: Simulation Result

5.2 Requirements Verification
The safety requirements need to be specified in a formal

language. Typical safety requirements for a technical system
look like as follows:

• ”It is always possible to reach state X”
• ”After pressing switch X must necessarily follow the

action Y”.

In case of the first requirement, LTL is not adequate since
LTL can only express thatX is actually reached and not that
it can be reached. As already described in Section 3.1, LTL
only allows to make specifications on a single path. CTL
can state this property with formula AG(EF (X). There-
fore we decided to use CTL. Specifications can be created
using all usual CTL operators (AG,AF,AX, ...). In atomic
formulas, comparisons between all kind of variables includ-
ing propagated properties and symbolic values can be ex-
pressed. Both, properties at ports and variables can be ac-



sensorIn out

controller

p1

leftTank

ou
t

p1
p2

flowmeter

valve

p1

rightTank

pump1

p1

consumer

Figure 4: Example System

cessed via the absolute path, starting at root component
(e.g. MAIN.valve1.port1.f low.dir == IN).

The evaluation of path quantifier in CTL formulas is in
principle based on graph exploration. Depending on the op-
erator, an expression φ is for instance verified at all paths
at each node (in case of operator AG). φ can be any kind
of expression, even an expression with a path quantifier. If
φ is an expression with a path quantifier, the evaluation of
the expression does not begin at root node of the simulation
result, but rather at the current position of exploration. In
case of a violation of a CTL formula, a counterexample is
generated. A counterexample is characterized by a trace of
events that have been executed on the path from the root
node to the node where the specification is violated. Unlike
NuSMV, which only generates one counterexample, our ap-
proach is able to create all counterexamples that violate a
specification. However, there are still CTL expressions that
will not return any counterexample. For example the ex-
pression AGφ ∧ AGψ will just result to TRUE or FALSE.
Generation of counterexamples is not possible in this case,
since this would lead to ambiguities.

6. EXAMPLE
Figure 4 shows a very simple example system. The system

consists of three tanks (left, right, consumer), a 3-position
valve, flow meter, pump and a controller. The controller is
responsible for keeping the consumer always supplied with
liquid. In case of an empty tank (established through the
flow meter), the controller is able to switch to the second
tank. A safety requirements specification for this system
may look like as follows: AG((((MAIN.leftTank.fm==Ok
‖ MAIN.rightTank.fm==Ok) && MAIN.flowmeter.fm !=
Leakage)→ AF(MAIN.consumer.p1.flow.dir == IN))). This
means that at least one tank must be functional (no leak-
age, not empty), and there must be no leakage at flow me-
ter, eventually the consumer is supported with fluid. Obvi-
ously this property is not satisfied. Consequently verification
algorithm will deliver a quite comprehensive set of coun-
terexamples. For instance the following event sequence will
falsify the property: MAIN.v1.ActivateStuckAtPosition2 →
MAIN.right.SetEmpty; The valve stuck at position two (sup-
ply from the right tank) and after that the right tank is
empty. The controller tries to change the supply from the
first tank, however the valve cannot changes the position.

Therefore the consumer will no longer be supported with
fluid.

7. CONCLUSION
In this work we described a method of formal verification

of technical systems using smartIflow. Existing approaches
to formal verification mostly use existing model checking
tools. We cannot utilize these tools since the modeling for-
malism of smartIflow is quite different to input languages
of existing model checkers. Despite the fact that we can-
not use existing model checking tools, we use the powerful
temporal logic CTL to specify the safety requirements. In
contrast to model checking tools like NuSVM, our approach
enables generation of multiple counterexamples. In the next
step, we plan to enrich the events with information about
the probability of failure to calculate the total probability
of failure.

8. REFERENCES
[1] NuSMV 2.5 User Manual. Italy, 2010.

[2] C. Baier and J.-P. Katoen. Principles of Model
Checking (Representation and Mind Series). The MIT
Press, 2008.

[3] M. Batteux, T. Prosvirnova, A. Rauzy, and L. Kloul.
The altarica 3.0 project for model-based safety
assessment. In 2013 11th IEEE International
Conference on Industrial Informatics (INDIN), pages
741–746, July 2013.

[4] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen,
T. Noll, and M. Roveri. The COMPASS Approach:
Correctness, Modelling and Performability of
Aerospace Systems, pages 173–186. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[5] Federal Aviation Administration (FAA). FAA System
Safety Handbook, Chapter 9: Analysis Techniques,
Dezember 2000.

[6] M. Gudemann and F. Ortmeier. A framework for
qualitative and quantitative formal model-based safety
analysis. In High-Assurance Systems Engineering
(HASE), 2010 IEEE 12th International Symposium
on, pages 132–141, Nov 2010.

[7] P. Hönig and R. Lunde. A new modeling approach for
automated safety analysis based on information flows.
In 25th International Workshop on Principles of
Diagnosis (DX14), Graz, Austria, 2014.

[8] P. Hönig, R. Lunde, and F. Holzapfel. Modeling
technical systems with smartiflow for safety related
tasks. In International Workshop on Applications in
Information Technology (IWAIT-2015),
Aizu-Wakamatsu, Japan, 2015.

[9] M. Huth and M. Ryan. Logic in Computer Science:
Modelling and Reasoning About Systems. Cambridge
University Press, New York, NY, USA, 2004.

[10] A. Joshi, M. Whalen, and M. P. Heimdahl.
Modelbased safety analysis: Final report. Technical
report, University of Minnesota, 2005.

[11] P. Struss and S. Dobi. Automated Functional Safety
Analysis of Vehicles Based on Qualitative Behavior
Models and Spatial Representations. In The 24th
International Workshop on Principles of Diagnosis
(DX-2013)., pages 85–91, 2013.


