Modeling Technical Systems with smartiflow for Safety
Related Tasks

Philipp H6nig
Hochschule Ulm
University of Applied Sciences
Institute of Computer Science

hoenig@hs-ulm.de

ABSTRACT

SmartIflow (State Machines for Automation of Reliability--
related Tasks using Information FLOWS) is a modeling for-
malism for automating safety related tasks. It considers sys-
tems on a quite high level of abstraction without losing too
much predictive power. Since existing approaches often lack
in integration into the development process, we present a
new method that allows safety engineers to model in their fa-
miliar environment. Simulink, Simscape, and Stateflow offer
an optimal platform to visualize and edit smartIflow mod-
els. This paper describes the graphical notation of smart-
Iflow components in Simulink and the translation into the
original language. The practicability of our new graphical
modeling approach is shown by an example system that we
have modeled successfully.

Categories and Subject Descriptors

B.8.1 [Hardware]: Reliability, Testing, and Fault-Tolerance;
1.6.2 [Computing Methodologies]: Simulation Languages

General Terms
Algorithms, Reliability, Languages

Keywords

Model-Based Safety Analysis, smartIflow, AltaRica, HiP-
HOPS, Simulink, Simscape, Stateflow

1. INTRODUCTION

Assistance systems in cars are primarily designed to im-
prove safety and comfort. However, a failure in such systems
can lead to critical situations like abrupt unintentional steer-
ing movements or brake actions. Such systems are called
safety-critical [4], since an error can lead to high material
damage or even to loss of life. Therefore, it is an essential
task to ensure system safety even in critical situations. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWAIT ’15, Oct. 8 — 10, 2015, Aizu-Wakamatsu, Japan.

Copyright 2015 University of Aizu Press.

Rudiger Lunde
Hochschule Ulm
University of Applied Sciences
Institute of Computer Science

rlunde@hs-ulm.de

Florian Holzapfel
TU Miinchen
Institute of Flight System
Dynamics
florian.holzapfel@tum.de

is achieved by applying several analysis tasks during the de-
velopment process. Fault Tree Analysis (FTA) and Failure
Modes and Effects Analysis (FMEA) are probably the most
famous methods for safety assessment. The problem with
these traditional analysis techniques is the only partly avail-
able automation, which makes the analysis time consuming
and also error-prone (especially for more complex systems).
Model-based safety analysis (MBSA) as defined in [3] tries to
overcome this problem by using a formalized and computer
understandable model of the system to automate the analy-
sis process. There are already a lot of approaches to MBSA
available whose underlying models are quite different. Dis-
tinguishing criteria are for instance the connection modeling,
the incorporated knowledge and especially the level of ab-
straction. The main problem behind the existing approaches
is the level of abstraction. Very detailed models will result
in great modeling effort and consequently to high computa-
tional effort while using highly abstracted models will lead
to incomplete results which means that some effects can’t
be revealed. Another problem of existing approaches is the
integration into the development process. Most of the avail-
able analysis tools require models in special formalism inde-
pendent of the models for simulation. Engineers will have
to use a separate tool and spend much time in keeping the
models consistent.

In this paper we present the modeling approach of smart-
Iflow which was first described in [2]. It supports reasoning
about failures and their effects through the whole product
cycle. We briefly describe the concepts behind smartIflow
and show how systems models can be composed graphically
using Simscape and Stateflow.

This paper is organized as follows. Hereafter, we briefly
analyze two existing approaches and their basic limitations.
In Section 3 the concepts behind our modeling formalism
are described. Graphical modeling will be explained in Sec-
tion 4. In Section 5 the results of our experiments with an
example system are shown. Finally a short conclusion will
be given.

2. RELATED WORK

The MathWorks Simulink! and Simscape? are de facto
standard for simulation of technical systems. In Simulink
models are composed of a set of mathematical blocks such as
integrators, derivatives or basic arithmetic operations that
are connected via directed connections. The resulting block

"http://www.mathworks . com/products/simulink/
’http://www.mathworks . com/products/simscape/

diagram is equal to the mathematical model of the system
under analysis. Simscape is an extension to Simulink, which
enables physical modeling of multidomain systems. Mod-
els are composed of blocks representing the components in
the real system. Simscape already provides a set of pre-
defined blocks from various domains such as electric mo-
tors, resistors, or valves. Additionally, custom blocks can
be created. The connections in Simscape are bidirectional.
Thus the structure of the models matches the structure of
the real system. Simulink and Simscape are optimal tools
for simulation, but not for getting widespread information
about system safety. The level of abstraction in particular
of Simscape is too low. Both simulation tools use contin-
uous solvers. Thus analyzing all possible failure situations
would lead to state-space explosion. Furthermore, models in
Simulink and Simscape only support deterministic behavior.
To reach an appropriate level of completeness with accept-
able computational efforts, one will often need more abstrac-
tion. The levels of abstraction of approaches to MBSA are
quite different.

HiP-HOPS (Hierarchically Performed Hazard Origin &
Propagation Studies) [6] is a modeling formalism using an
extremely high level of abstraction. Models are based on
Simulink block diagrams wherein a fault model is assigned
to each block. The fault model is composed of a set of ex-
pressions which specify how a component responds to inter-
nal or failures created by other components. Fault modeling
is quite limited since there are no state variables and failure
propagation is restricted to one failure per connection. The
directed connections also lead to the problem that situations
in which the flow direction reverses can’t be handled. In ad-
dition, the structure of both, the real system and the model
is quite different. Multiple failure propagation channels can
only be handled by creating multiple connections between
components.

In contrast to HiP-HOPS, AltaRica [1] is a modeling for-
malism whose level of abstraction is somewhere between
Simscape and HiP-HOPS. In principle, components in Al-
taRica are represented by nodes comprising variables, events,
transitions, and equations to describe the behavior. Flow
variables are used to exchange information between com-
ponents, while state variables can be used to represent the
operational- or failure-modes of a component. Events are
used to represent state changes. Transitions consist of an
event name that induces the state change, a guard and a
list of state updates. A guard is the condition which must
be fulfilled to enable a transition. As described in [5] there
are well known limitations in the first AltaRica approach.
AltaRica Data-Flow and AltaRica 3.0 [7] are the successor
of AltaRica. AltaRica Data-Flow tries to reduce the compu-
tational effort by updating variables by using a fixed order
for value propagation. However, no bidirectional flows and
no looped systems are allowed. AltaRica 3.0 handles looped
systems and bidirectional flows [7]. However, modeling phys-
ical flows is still very limited (there are no built-in elements
for flow direction calculation) and events can only be trig-
gered externally but not by components within system.

3. THE SMARTIFLOW FORMALISM
3.1 Basic Concept

In principle the main concepts behind AltaRica and smart-
Iflow are quite similar. In fact, both approaches follow the

© W N U W N

NN NNNRNRE S 2 2R R e e e
N N N R R R R T S TS

principle of Discrete Event Systems (DES). SmartIflow re-
gards components as finite state machines, which means
that each component consists of a set of state variables and
the corresponding values. In contrast to AltaRica, events
that updates component states are generated based on sig-
nal changes initiated by other components. The behavior
of a component is specified in terms of value changes of
state variables as reaction on events, modifications of the
network structure, and property publication through the
network. KEach component has a set of typed ports over
which the components are linked. SmartIflow allows both
directed and undirected connections. These connections are
used to propagate abstracted physical flow information and
additional data through the network. The propagated in-
formation is specified in terms of properties and depends
on the current system state since the behavior of a com-
ponent is state-dependent. Properties are key-value pairs
and they are used to abstract from the physical values since
we are not interested in specific signal values. Properties
for instance can indicate a flow in a system that deviates
from the expected value. Besides property propagation, the
behavior description of a component also allows the mod-
ification of the network structure. For flow direction de-
termination, smartlflow has some built-in components like
sources, drains or bipolar sources. One simulation step is
comprised of three sub steps. First, network structure and
property values at specific flow variables are updated based
on the current values of the state variables. Then, physical
flow directions are calculated and property values are prop-
agated through the network. Finally, the values of the state
variables are updated based on events produced by changed
property values.

3.2 Language

The following listing shows an excerpt of a valve modeled
in the smartIflow modeling language.

class Valve {

Ports:
Logicallnput inlj;
Fluidal p1l;
Fluidal p2;
States:

Enum|[Positionl ,Closed] s = Closed;
Enum| StuckAtPositionl ,Ok, StuckAtClosed]
fm = Ok;
Transitions:
when (inl.val=Closed && fm==0k &&
s == Positionl) {
Closed;

s =

}
when(inl.val=Positionl && fm==0k &&
s == Closed) {

s = Positionl;

Behavior:
if (fm==0k && s==Positionl) {
connect (pl,p2,[flow.val=controlled]);

if (fm==StuckAtPositionl) {
connect (pl,p2);

}

The modeling language is component- and object-oriented.
For each system component a separate class is created. Sim-
ilar classes only need to be created once, because classes can
be instantiated several times. Model components can, of
course, be nested to create hierarchical structures. A com-
ponent class comprises five sections, namely Components,

Ports, States, Transitions and Behavior. The section Com-
ponents is used to instantiate subcomponents. Each sub-
component can be accessed with a unique identifier. Connec-
tion points that are used to connect components are called
ports. All ports of a component are declared in the sec-
tion Ports. A port is specified by a type and identifier that
must be unique within a component. The states and fail-
ure modes of a component are specified by state variables
in section States. Each variable has a number of potential
values and also a default value. The section Transitions de-
scribes how a component changes its state. Transitions are
specified by a when-clause followed by a set of state assign-
ments. Each when-clause consists of a logical expression
that specifies the condition under which the state updates
are performed. A logical expression is composed of state
comparisons and comparisons between port properties. A
state update is realized by assigning a new value to a state
variable. In case of non-deterministic transitions, a number
of new values, separated by the keyword or can be assigned.
As already said, the behavior is state-depended. Therefore
section Behavior consists of a set of conditional branches
that specify the behavior in the different states. The condi-
tions consist of a logical combination of state comparisons.
The behavior of a component is specified by a set of actions
namely set and connect. While set only puts a number of
properties to a port, the connect-function links two ports
and additionally a set of properties can be added. By omit-
ting the if-clause, default actions can be created that are
performed unconditionally.

4. GRAPHICAL MODELING

4.1 Motivation

Safety engineers are often not familiar with modeling lan-
guages such as AltaRica or smartIflow. Therefore creating
system models in textual mode even with tool support is
very complicated, tedious, time consuming and also error
prone. Well known techniques from code editors like syn-
tax highlighting, auto completion or code templates support
the user in coding. However, it will be still hard to get an
overview about the component instances and how they are
interconnected. Another problem arises when specifying the
transitions in smartIflow since the textual representation is
very hard to understand in case of more complex compo-
nents. A way to get rid of this problem is to use graphi-
cal modeling. Basically there are different ways to enable
graphical composition for smartIflow models. One possi-
bility could be for example to build a modeling tool from
scratch or to use a framework like eclipse graphical modeling
framework (GMF)?. Obviously this will lead to an optimal
platform for modeling systems, however the engineers will
then have to use another tool besides their standard simula-
tion tools. Furthermore, this will result in additional effort
since the models have to be created twice even though the
structure of both models is quite similar. In addition, the
engineers will have to spend a lot of time in keeping the mod-
els consistent. Since MatheWorks simulation tools Simulink
and Simscape are widely used in industry, we decided to
use them as platform for modeling technical systems in the
smartIflow formalism.

3http://www.eclipse.org/modeling/gmp/

4.2 Matlab Integration

Since the language of smartlflow is component-oriented
and object-oriented, we utilize the possibility of creating
custom libraries in Simulink. This means that a component
only needs to be modeled once and multiple instances can
be created by drag and drop. Components are connected as
usual. Figure 1 shows the structure of a valve modeled with
the smartIflow formalism in Simulink.

in1

TransitionsAndBehavior

—————————— -
A [N
2 oS
. 1 1 AN
. 1 N
. ! ~
’ 1 1 ~
e 1 Valve 1 \s\
e Jr e { N
7 ’ \ ~
. ’ Y o
Re _(' S ~
7 YA g Ry gy Sy g g S Sy g
h]
' i
I o
: sifPortType1 p2 :
1 smartiflow Port Type :
H } Fluidal Fluidal i
1 Port Type smartiflow :
1
1 p1 sifPortType :
1
| 1
| 1
| 1
' i
1
NED’ (@ 1
& @) :
1
| 1
| 1
! H

Figure 1: Component structure of a valve

Basically, each smartIflow class is represented by a Simulink
subsystem. SmartIflow allows you to create hierarchical
models. Thus each component can include several com-
ponent instances. Ports are represented by Simulink In-
ports respectively Qutports in case of directed connections
and in case of undirected connections by Simscape physical
ports (PMIOPort). In addition, a type must be specified
for physical ports. This is realized by connecting a special
component called sifPortTyp to a port. The type can be
specified in the mask of the component. In case of our ex-
ample component, there are two ports of type fluidal (pl1,
p2) and one input port (inl). When it comes to the rep-
resentation of transitions and the behavior of a component,
Stateflow seems to be a perfect candidate. Stateflow is a
toolbox in Matlab for state diagram modeling. As shown in
Figure 1, each component may contain exactly one State-
flow chart. This chart is used to represent the transitions
and behavior of a component. As shown in figure 2, the
Stateflow chart consists of two superstates, namely Transi-
tions and Behavior. The state Transitions is used to define
the state variables and, as the name implies, to specify the
state transitions. Therefore, the substates of Transitions
represent the various state variables of a component and
their substates represent the corresponding potential values.
Substates with dashed borders indicate a parallel decompo-
sition, while solid borders indicate exclusive state decompo-
sition. Default transitions (transitions with no source ob-
ject) are used to specify the initial value of a state variable.
Transitions between state values are labeled with conditions
which specify, under which conditions the value change can
take place. Non-deterministic transitions can be modeled
by creating transitions that have the same source state and
label and end at different destination states. The second
superstate Behavior is used to define the state-dependent
behavior. Each behavioral description is modeled by a sin-

{ Transitions

(s
i fin1.val==Position1 && fm==0k]

Position1 Closed i
e

[in1.val==Closed && fm==0k]

i

i Ok
Jp—

StuckAtPosition1 ‘ StuckAtClosed ‘

/Behavior

[fm==0k &8 s==Position1] 5

/b3
on [fm==StuckAtPosition] &
entry: pos1=base

Figure 2: Transitions and behavior of a valve

gle state which contains two substates, namely On and Off.
The transition from state Off to On specifies the condi-
tion under which the behavior is executed while the actual
behavior is modeled as entry action inside state On. The
behavior is described in a simplified syntax. For example,
pos1=base[flow.val=controlled] connects the ports pos! and
base and publishes the property flow.val=controlled. When-
ever the condition of the Off-On-Transition is not fulfilled,
the unconditional On-Off-transition will change the state of
the behavior to Off. The modeling in Simulink has the same
expressive power as the smartIflow language. Therefore, a
system modeled with the smartIflow formalism in Simulink
is semantically equal to the model in raw smartIflow classes.
Only the kind of representation differs.

4.3 Conversion Algorithm

Since we need a clear interface between the graphical rep-
resentation and the simulator, Simulink models are con-
verted in the modeling language of smartIflow. Matlab pro-
vides a set of functions to access the blocks, their parame-
ters and the structure of a Simulink model. The function
find_system finds all blocks in a model and returns a handle
to them. With function get_param and a block handle the
properties of a block such as instance name, the name of
the parent block or the port connectivity can be accessed.
Stateflow charts can be accessed with function find. This
function can be parameterized to analyze the composition of
a chart and the transitions between the sates. Since smartl-
flow supports hierarchical models, the conversion algorithm
starts at top level and goes recursively down to the blocks
at the lowest level. All gathered information about a com-
ponent is stored in an object, which is then finally written
to a smartIflow class.

Our graphical conversion tool can be used to translate a
Simulink model into raw smartIflow classes. The tool helps
to select the input model and an output folder where the
resulting classes are stored. To use the converter, it suf-

fices to add the path to the conversion tool to the Matlab
search path and enter ConverterGUI in the Matlab Com-
mand Window.

S. EXPERIMENTAL VALIDATION

Figure 3 shows an example system that we have success-
fully modeled in Simulink with the smartIflow formalism.
The example shows a fuel system [8] that could be deployed
in the real aircrafts. Main purpose of the system is to sup-
port the two engines with fuel that comes from the wing
tanks. There are different ways of supporting the engines
with fuel, such as crossover, where both engines are sup-
plied by one tank (left/right). The model consists of over

Figure 3: Example fuel system

60 components such as valves, pipes and controller. The
conversion of the model into the smartlflow language took
about 1.2 seconds on a workstation with an Intel Core i5 at
3.3 GHz running Windows 8.1 and Matlab 2014b.

Maucher discussed in [5] different ways of modeling the
fuel system in AltaRica 1. The experiments have shown
that the example system can be modeled only with massive
simplifications since the formalism behind AltaRica has too
many limitations (e.g. missing flow direction determination
and incompatibility with looped systems). In addition, the
lack of tool support for graphical model composition limits
the practicality for bigger systems.

Thanks to the Simulink integration, modeling systems in
HiP-HOPS is in principle quite easy and intuitive, even for
more complex systems. The aircraft fuel systems consists
of several pipes that allow flow in both directions. To han-
dle such situations in HiP-HOPS, additional connections are
necessary since HiP-HOPS uses unidirectional connections
for information exchange between the components. The re-
strictions of HiP-HOPS (e.g. no state-dependent behavior)
again lead to an extremely simplified system model.

6. CONCLUSION

In this work we showed the main concepts of smartiflow.
SmartIflow tries to overcome the problems behind existing
approaches, which mainly originates from the choice of the
level of abstraction, by treating the connections between the
components as information channels. This concept in com-
bination with flow direction determination will help to han-
dle situations with unforeseen flow direction changes. The
Simulink integration allows even non-computer scientists to
model systems quite easily. The component-oriented per-
spective of Simulink provides an optimal platform for mod-
eling in smartIflow. Even complex transitions, can be speci-
fied straightforward in Stateflow. The experiments with the
example system have shown that even large systems can be
modeled in a simple and clear way.

7. REFERENCES
[1] André Arnold, Gérald Point, Alain Griffault, and

Antoine Rauzy. The altarica formalism for describing
concurrent systems. Fundam. Inf., 40(2,3):109-124,
August 1999.

[2] Philipp Hoénig and Riidiger Lunde. A new modeling
approach for automated safety analysis based on

[4

[5

information flows. In 25th International Workshop on
Principles of Diagnosis (DX14), 2014.

Anjali Joshi. Behavioral Fault Modeling and Model
Composition for Model-based Safety Analysis. PhD
thesis, Minneapolis, MN, USA, 2008. AAI3324436.
J.C. Knight. Safety critical systems: challenges and
directions. In Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on,
pages 547-550, May 2002.

Daniel Maucher. Model-based safety analysis with
altarica.

Yiannis Papadopoulos and JohnA. McDermid.
Hierarchically performed hazard origin and propagation
studies. In Computer Safety, Reliability and Security,
volume 1698 of Lecture Notes in Computer Science,
pages 139-152. Springer Berlin Heidelberg, 1999.
Tatiana Prosvirnova, Pierre-Antoine Brameret, and
Antoine Rauzy. Model-based safety assessment: The
altarica 3.0 project. INSIGHT, 16(4):24-25, 2013.
Neal Andrew Snooke and Mark H. Lee. Qualitative
order of magnitude energy-flow-based failure modes and
effects analysis. CoRR, abs/1402.0581, 2014.

