
Applying Domain Splitting
to Behavior Prediction in Model-Based Diagnosis

Rüdiger Lunde 1

Abstract. This paper discusses the application of constraint solv-
ing methods to model-based diagnosis of technical systems. Our ap-
proach is based on interval propagation embedded in a branch and
prune algorithm. To take into account the large size of constraint nets
describing the behavior of real systems, we have taken special care to
reduce recursion depth by means of graph decomposition and intelli-
gent branching. An ATMS interface is presented which supports both
the behavior prediction and the candidate generation tasks. Finally,
we discuss experimental results gained from our implementation.

1 Introduction
Since de Kleer and Williams introduced the GDE concept [5] in the
late eighties, lots of diagnostic systems have been presented, which
extend the original concept in some way. Explicit knowledge about
faulty behavior was added to the models [16], generalizations were
presented for the diagnosis of finite state machines [17], and many
contributions adressed improvements of efficiency. But still, two fun-
damental GDE concepts are shared by the majority of current model-
based diagnostic systems: The paradigm of component-oriented be-
havioral modeling and the use of conflicts to direct the search for
diagnostic candidates.

The need for conflicts forces developers of inference machines
to incorporate some kind of local propagation which allows the
solver to track dependencies, especially between diagnostic assump-
tions and prediction results. Local propagation iterates in some order
across the relations of the behavioral model while refining the repre-
sentation of the analyzed system states until a fixed point is reached.
For example, if static behavior is represented by constraints over fi-
nite domains, the refinement for a given relation is usually achieved
by computing projections for each variable which is constrained by
that relation.

The drawbacks of local propagation are well known [14]. In gen-
eral, this kind of inference is incomplete. Overestimations can and
will occur if the relations of the behavioral model contain cyclic de-
pendencies. Such structures occur frequently in systems whose com-
ponent interfaces are characterized by vectors of flow and potential
quantities. Figure 1 shows a widely known example in the domain of
analogue circuits: The behavioral model of a series of two resistors,
based on Ohm’s and Kirchhoff’s laws. Fortunately, cycles do not nec-
essarily lead to overestimation. In our simple example, the success of
local propagation depends on the relations used. If the ranges of all
variables are bounded and the resistance parameters of both resis-
tors are sufficiently different, pure interval propagation will suffice
to prune out impossible parts of the given ranges.

1 R.O.S.E. Informatik GmbH, Schloßstr. 34, 89518 Heidenheim, Germany
email: r.lunde@rose.de

Figure 1. Constraint net of two serial resistors. Nodes represent variables
(names in dot-notation) and constraints.

From projects, mostly in the automotive domain, we gained ex-
perience which shows that there is a need for stronger constraint
solvers to achieve reliable prediction results for models of real-world
systems. In this paper, we present an algorithm which combines lo-
cal propagation with domain splitting techniques. It is well suited
for constraint systems over continuous domains, but can be applied
to finite and mixed domains as well. The basic idea coincides with
the branch and prune algorithm presented in [10]. Our extensions to
that approach are motivated by the special structure of the models
we built for automotive applications. These models tend to be rather
complex and large (containing several thousand variables and con-
straints), but use mostly very simple constraints. Hence value refine-
ment with respect to a single constraint is cheap, and hull-consistency
can often be achieved. At the same time, branching is very expensive.

The motivation of the paper focusses on model-based diagnosis.
Nevertheless, the underlying principle of conflict-directed search for
states with certain properties is very general. Therefore, the presented
algorithms contribute to other application areas as well, including
heuristic diagnostic knowledge generation, automated risk analysis
and design for diagnosis. We start with some preliminary notions
and a survey about the branch and prune algorithm in Section 2. We
take a closer look on subnet selection based on graph decomposition
techniques, intelligent branching strategies and an ATMS interface
in Section 3. In Section 4, we discuss some experiences gained from
our implementation of the presented algorithms, which is now part
of the commercial model-based analysis tool RODON.

2 The Branch and Prune Algorithm

Before we describe the branch and prune algorithm, we start with
some basic definitions to formalize the problem to be solved in the
paper.

2.1 Constraint System

System behavior is described in the form of constraints:

Definition 1 (constraint system) A constraint system CS =
〈V,D, C〉 consists of a finite set of variables V = {v1, . . . , vn},
a domain composed of the corresponding variable domains D =
D1 × . . . ×Dn and a set of constraints C = {c1, . . . , cm} over V ,
restricting the values that may be assigned to variables. Subsets ofC
are also called subnets.

We support discrete variable domains as well as continuous vari-
able domains. In the algorithms discussed below, domains are rep-
resented by vectors of variable domains. If clear without ambiguity,
those vectors are identified with the denoted cross product.

Let var : C → 2V be a function returning the set of variables
affected by a given constraint C, and rel : C → 2D a mapping
from a constraint to its corresponding relation which is a subset ofD.
Relations can be defined extensionally (by tables) or intentionally, for
example by (in)equalities. The projection function πi : 2D → 2Di

maps each subset D′ of the domain D to a subset of the variable
domain Di:

πi(D
′) = {ei | ∃e1 . . . ∃ei−1∃ei+1 . . . ∃en : (1)

〈e1, . . . , ei−1, ei, ei+1, . . . , en〉 ∈ D′}
Elements of D satisfying all constraints are called solutions, and the
set of all solutions can be characterized by

sol(CS) =
⋂

1≤j≤m
rel(cj). (2)

The set of possible values for a single variable vi is given by
πi(sol(CS)).

In the context of model-based diagnosis, we use variables to model
behavioral modes of components (e.g. switch open/closed, wire
ok/defective) as well as observable or internal states (e.g. engine
stopped/running) and other quantities (e.g. current through a con-
nection). Conditional constraints of the form if <condition>
then <relation> are used to express mode-dependent behav-
ior. To guarantee decidability of conditions, we expect all variables
which are tested in a condition to have a finite domain.

It seems to be a key requirement to allow different levels of ab-
straction in models, as well as the explicit representation of uncertain
knowledge. Therefore, we are especially interested in hybrid behav-
ioral models containing quantitative relations (equations, inequali-
ties, interpolating splines) as well as qualitative ones (tables, formu-
las with qualitative operators).

2.2 Constraint Solving
For certain diagnostic problems it suffices to determine whether a
solution exists or not 2, for instance to check a candidate by steady
state analysis in a consistency-based framework. More information
about possible values of variables is needed for abductive diagnosis,
or for predicting the evolution of states over time. Unfortunately, the
set of all solutions cannot be computed exactly because of the poten-
tially infinite set size, and the limited precision of machine number
representations. That is why interval analysis algorithms focus on
hull representations of solution spaces, based on the notion of global
consistency.

Definition 2 (global consistency) A constraint system CS =
〈V,D, C〉 is called globally consistent iff ∀i : Di = πi(sol(CS)).
In the context of fixed sets V and C we also speak of globally con-
sistent variable domains.
2 Even this problem is NP-complete for constraint systems with finite do-

mains.

Let CS = 〈V,D, C〉 be a constraint system. The aim of this pa-
per is to present efficient algorithms to compute approximations of a
domain D′ with the following properties:

• D′ ⊆ D,
• sol(CS) = sol(〈V,D′, C〉) and
• 〈V,D′, C〉 is globally consistent.

The discussed algorithms try to reduce the range of each variable as
far as possible without losing any solution. Ideally, a single value re-
mains for each variable. In underdetermined systems (which is com-
mon in model-based diagnosis, due to incomplete or fuzzy informa-
tion) a set of possible values is computed for each variable. For con-
straint systems with discrete variable domains the domain D′ can be
computed exactly. However, when reasoning about continuous do-
mains we can compute only supersets of D′.

2.3 The Base Algorithm
In [10] a recursive branch and prune algorithm is presented to solve
polynomial systems. Our version of that algorithm is shown in Fig. 2.
It follows the general idea of the original but extends it by a graph
decomposition step.

The algorithm starts with enforcing local consistency by means
of the function prune, which implements a local constraint propa-
gation method. For numeric constraints, interval propagation [11] is
applied. If local propagation stops because one of the variable do-
mains turns out to be empty, an empty domain is returned. Other-
wise, the constraint system is checked whether some of its parts are
insufficiently solved. The constraint sets which represent those parts
are computed by the function getSubnetsForBranching. It re-
turns a set of subnets. A very simple implementation of that function
could look for domains Di which are not yet small enough (with re-
spect to some measure), and return the empty set if there are no such

Domain branchAndPrune(〈V,D = 〈D1, . . . , Dn〉, C〉) {
D′ = prune(〈V,D, C〉)
if (∃i : D′i = ∅) {

return 〈∅, . . . , ∅〉
} else {

L = getSubnetsForBranching(〈V,D′, C〉)
for (C′ ∈ L) {
〈D1, D2〉 = branch(〈V,D′, C′〉)
D1′ = branchAndPrune(〈V,D1, C′〉)
D2′ = branchAndPrune(〈V,D2, C′〉)
D′ = 〈D1′

1 ∪D2′
1 , . . . , D

1′
n ∪D2′

n 〉
}
return D′

}
}

Figure 2. The Branch & Prune Algorithm

〈Domain, Domain〉 branch(〈V,D,C〉) {
vi = select a decision variable from

⋃
c∈C var(c)

〈D1
i , D

2
i 〉 = Di.split()

return 〈〈D1, . . . , D
1
i , . . . , Dn〉, 〈D1, . . . , D

2
i , . . . , Dn〉〉

}
Figure 3. Decision variable selection in algorithm branch

domains, and otherwise, a set containing the set of all constraints as
a single subnet. For instance, in discrete domains, a suitable measure
is size(Di) > 1.

For each subnet, the domain is split into two parts by
means of the function branch. To both partitions, the algorithm
branchAndPrune is applied recursively. Afterwards, the set union
of the variable domains of both partitions is used to define the result-
ing domain.

Fig. 3 describes a possible realization of domain partitioning by
selecting a so-called decision variable and splitting its domain. Suit-
able selection criteria will be discussed in Section 3.2.

Given the simple implementation of getSubnetsFor-
Branching discussed above and the finite domains for
each variable, it can easily be seen that the algorithm
branchAndPrune terminates. The total size of all variable
domains provides an upper bound for the recursion depth.
Let Dbp = branchAndPrune(〈V,D, C〉). We show that
sol(〈V,D,C〉) ⊆ sol(〈V,Dbp, C〉), i. e. branchAndPrune
does not lose a solution, by induction over the number of elements
in D:

1. Let D contain just one element e and let e ∈ sol(〈V,D, C〉).
We show that e ∈ Dbp by stepping through the statements of the
algorithm. Since e satisfies all constraints, it is part of D′ after
pruning. No subnet for branching is found, soD′ (containing e) is
returned.

2. Let D contain n elements, and let one of those elements e satisfy
all constraints. The solution e is not lost during pruning, hence
e ∈ D′. If D′ contains just e, D′ is returned.
Otherwise, C is selected for branching and the domain is parti-
tioned. So there exists a partition Di with e ∈ Di and size(Di)
< n. The induction assumption implies that e ∈ Di′ . So after
uniting the results of both partitions, e is contained in D′, which
is finally returned.

To show that 〈V,Dbp, C〉 is globally consistent, it can be proven
in a similar way, by induction over the size of D, that

∀i≤n ∀ej : ej /∈ πi(sol(〈V,D, C〉))→ ej /∈ Dbp
i . (3)

Hence, using contraposition and the fact that no solution is lost,

∀i≤n ∀ej : ej ∈ Dbp
i → ej ∈ πi(sol(〈V,Dbp, C〉)). (4)

In general, global consistency is lost if continuous domains are
used. But approximations of globally consistent domains can still be
obtained. When specializing the generic branch and prune algorithm
for interval domains, besides accuracy of the approximation a major
concern is efficiency.

3 Extensions for Application in Model-Based
Diagnosis

3.1 Subnet Selection
In the field of continuous CSP solving, strong graph decomposi-
tion algorithms are known [1], which are based on the Dulmage and
Mendelsohn decomposition. In those algorithms, a system of equa-
tions is viewed as a bipartite graph, whose vertices represent the vari-
ables and equations. Edges connect each equation with the variables
occuring in it. The result of the decomposition is a directed acyclic
graph of blocks3. Unfortunately, those algorithms cannot be applied

3 Blocks correspond to subnets in our approach and generally include cycles.
They are connected by directed arcs which represent causal dependencies.

here, due to the hybrid structure of our constraint systems. While
conditions might be handled by a two step simulation approach,
which separates mode identification from continuous behavior pre-
diction, inequalities are definitly not covered by the Dulmage and
Mendelsohn decomposition technique.

The decomposition criteria proposed here are much weaker, but
do not impose restrictions on the kinds of relations used. Their aim is
to identify parts of the constraint system which can be solved inde-
pendently from each other. Besides the graph information obtained
from the constraint system structure, we integrate another source of
information, namely, the current value ranges of the variables. Since
the ranges are subject to change during the recursive solving process,
graph decomposition is not applied as a preprocessing step. Instead,
it is performed anew after each pruning step.4

If there exists a partitioning of the graph with the property that
there is no edge between nodes of different partitions, it is obvious
that the solutions of the whole constraint system can be computed
by solving each partition independently. The decomposition can be
computed in linear time with respect to the number of vertices. But
real systems do not often consist of completely independent parts.
In the following, we try to separate parts of the graph by stepwise
removal of irrelevant vertices and edges. In Figures 4–6, each step
is illustrated for a small constraint system with four constraints (el-
lipses) and six variables (rectangles). Value ranges are noted in curly
brackets.

Many interactions between different components depend on the
current operational or fault state of the system. An open switch dis-
connects two parts of a circuit, the same is true for a closed valve
in a hydraulic system or a broken belt in an engine. Using condi-
tional constraints to express state-dependent relations allows to dis-
tinguish between relations which are relevant for the current context
and those which are currently irrelevant. Constraints whose condi-
tions have been evaluated to false are irrelevant for dependency anal-
ysis, and can be removed from the graph. By focussing on relevant
constraints, partitions can be computed which are not independent in
general, but with respect to the currently analyzed state.

Figure 4. Step 1: Removing irrelevant constraints

Further subnet decomposition can be based on variables whose
range has already been determined to be a unique value. Pruning
stops at variables whose current range cannot be narrowed. Hence,
the effects of recursive pruning after splitting the domain of a de-
cision variable is restricted to non-unique values of variables in the
neighborhood of the decision variable. Consequently, variables with
unique values are irrelevant for subnet dependency analysis, and can
be removed from the analyzed constraint graph.

Unfortunately, unique value domains are never reached when split-
ting interval domains. So we have to define an approximation of suffi-

4 Implementations can profit from the monotonic refinement of ranges by
reusing graph analysis results gained one recursion level up.

Figure 5. Step 2: Removing irrelevant variables

cient uniqueness. The notion we use is based on absolute and relative
interval diameters:

Definition 3 (absolute and relative diameter) Let I = [a b] be an
interval. The absolute diameter of I is defined by diam(I) = b − a
and the relative diameter is defined by

diamRel(I) =

0 : a = 0 = b
∞ : a < 0 ≤ b ∨ a ≤ 0 < b

diam(I)
min(|a|,|b|) : otherwise.

(5)

Definition 4 (uniqueness with respect to maximal diameters) An
interval I is called unique with respect to the diameters dabs and
drel iff diam(I) ≤ dabs or diamRel(I) ≤ drel.

The definition can be generalized in a straightforward way for
sets of intervals and also discrete sets, by defining that sets with
size greater than one are not unique regardless of the specified di-
ameters. In our implementation, all variables whose current range is
unique with respect to the specified diameters are removed from the
graph. Termination is guaranteed if the domains of all variables are
bounded.

If pruning is based on arc-consistency or a strong approximation
like hull-consistency5 , branching is not needed unless there are alge-
braic loops in the constraint net. Hence, cycle analysis can be used
to estimate the success of further branching, and subnets without any
cycles can be removed from the graph.

Figure 6. Step 3: Removing cycle-free subgraphs

3.2 Intelligent Branching

Given a certain subnet, branching strategies have to face two prob-
lems:

• What is the best decision variable?
• Which is the best way to split the domain of that variable?

5 See e.g. [10] for a definition.

The latter question is the easier one to answer. It suggests itself to
split bounded domains “in the middle”. More crucial for efficiency
is the selection of the decision variable. We use a combination of
several heuristics based on the following criteria (among others):

• Variable types: prefer discrete variables, especially those who oc-
cur in not yet decided conditions;

• Value set size: prefer sets with two elements;
• Interval diameter: prefer large diameters.6

Another rather helpful criterion can be defined using the results
of cycle analysis. Recall that the relevance of a variable depends on
uniqueness with respect to the diameters dabs and drel. Hence, split-
ting a variable’s domain can make this variable irrelevant for recur-
sive subnet selection. Therefore, a cycle can be cut by splitting the
domain of one of the involved variables, until the specified maxi-
mal diameter is reached. We call a constraint net node cyclic if it is
involved in a cycle. For each cyclic variable, the number of cyclic
neighboring constraints in the net can be used to estimate the num-
ber of cycles potentially cut when choosing that variable as a decision
variable. The more cycles a variable potentially cuts, the more prefer-
able it is. This criterion helps to reduce the needed recursion depth
perceivably. In our experience, it is worth the additional computation
effort which grows linearly with respect to the net size.

3.3 An ATMS Interface
To integrate the branch and prune algorithm into a conflict directed
search for diagnostic candidates, some kind of dependency tracking
is needed. Several dependency tracking strategies have been pub-
lished to improve the efficiency of solvers for constraint satisfaction
problems (CSP). Conflict-based Backjumping [15] prunes out parts
of the search space based on conflicts. In addition, Dynamic Back-
tracking [7] supports prediction sharing across different points of the
search space. Dependency tracking for combinations of local propa-
gation techniques and dichotomic search strategies has been investi-
gated by Jussien (see [12] and [13]).

The branch and prune algorithm differs from the CSP solving
strategies mentioned above in two points: It does not stop after a
solution has been found7 , and it computes unions of variable ranges
obtained in different branches. Those ranges denote hulls around all
solutions of the constraint system. But how can we justify those hulls
with respect to the context assumptions of the corresponding recur-
sion depth? In the following, we sketch an interface to a basic ATMS
[3] extended by disjunction handling techniques. Interfaces to more
efficient TMS can be implemented analogously.

As usual, ATMS nodes are composed of three parts
〈data, label, justification〉. The label consists of a set of assumption
sets (called environments) which represents a disjunction of con-
junctions. In our context, data is used to store range assignments
to variables and assumptions. ATMS assumptions are introduced
for those range assignments which characterize the diagnostic
candidate. Horn justification statements (noted α1, . . . , αn ⇒ β)
suffice to inform the ATMS about new range assignments resulting
from local propagation steps during pruning. If an empty range is
deduced during pruning, a nogood (noted nogood{α1, . . . , αn}) is

6 To cut cycles as fast as possible, one should prefer small diameters. How-
ever, if the constraint system contains directed elements (constraints, whose
projections cannot be computed for every variable), the proposed prefer-
ence improves the reliability of simulation results.

7 The algorithm can easily be modified to do so, if only a consistency check
is needed.

asserted to the ATMS which represents the clause α1∧. . .∧αn →⊥.
Range assignments resulting from a split operation do not have a
Horn justification. But for dependency tracking, the relationship
between the original range assignment x = D and the two split
assignments x = D1 and x = D2 is important. The logical
formula representing the relationship is an implied disjunction
x = D → x = D1 ∨ x = D2. In [2] several encodings for complex
implications are proposed. To that purpose, a new statement (noted
choose{α1, . . . , αn}) is introduced which can be asserted to the
ATMS at any time, and which represents a primitive disjunction
α1 ∨ . . . ∨ αn. All encodings of complex implications use a
combination of assumptions, justifications, nogoods, and primitive
disjunctions.

In our context, the encoding “with no assumption disjuncts” is the
most efficient, because literals resulting from splitting will rarely oc-
cur in different disjunctions. Following that encoding, for each clause
x = D → x = D1 ∨ x = D2 resulting from a split operation, two
new assumptions Ai are introduced and the following expressions
are asserted to the ATMS:

choose{A1, A2}
x = D,Ai ⇒ x = Di for all i ∈ {1, 2}

If no conflict is found in either of the branches, for each variable
y the union D of both result ranges Di for y is computed and the
following clauses asserted to the ATMS:

y = Di ⇒ y = D for all i ∈ {1, 2}

This knowledge allows the ATMS to backtrack the dependencies be-
tween the assumptions which define the context with respect to the
current recursion level, and the ranges obtained. For this purpose, the
standard label update has to be extended by a hyperresolution rule:

choose{A1, A2}
〈data, λ, justification〉
nogood[{Ai} ∪ αi] or {Ai} ∪ αi ∈ λ and A3−i 6∈ αi for all i

〈data, {α1 ∪ α2} ∪ λ∗, justification〉

λ∗ is obtained from λ by removing all supersets of {α1 ∪ α2}.
Finally, another hyperresolution rule is needed to backtrack no-

goods in case both branches resulted in a conflict:

choose{A1, A2}
nogood[{Ai} ∪ αi] and A3−i 6∈ αi for all i

nogood[α1 ∪ α2]

The diagnostic system can benefit from dependency tracking in two
ways: First, the candidate generation process is focussed by conflicts
obtained from candidates which failed to explain the given situation.
Second, the efficiency of prediction is increased by sharing predic-
tion results between different contexts.

Results can even be shared between different branches during one
constraint solving task. To this end, the branch and prune algorithm
accesses the ATMS after pruning between the first and second recur-
sive call:

• If the first branch resulted in a conflict, the current context should
be checked for consistency. If the conflict is independent of
the split assumptions introduced in the first branch, the second
branch need not be investigated. This improvement corresponds
to Conflict-based Backjumping.

• Otherwise, for each refined range assignment, the label should be
checked. If the label contains an environment which itself does not
contain any of the newly introduced split assumptions, the corre-
sponding range assignment can be reused for the second branch.
This improvement corresponds to some aspects of Dynamic Back-
tracking.

4 Experimental Results

We have integrated a Java implementation of the concepts pre-
sented in this paper, into the commercial model-based analysis tool
RODON. The first version of the branch and prune algorithm was
available about one year ago. Since then, lots of improvements have
been added, especially with respect to performance, triggered by the
experience gained from modeling real-life systems. Today, the al-
gorithms are in daily use to automate the generation of diagnostic
knowledge based on construction data. For example, several car se-
ries produced by Daimler Chrysler are equipped with onboard diag-
nostic knowledge bases generated by RODON.

To demonstrate the usage of the branch and prune approach in
our application focus, we have chosen an anonymized model of an
automotive exterior lighting system (see Fig. 7). It consists of three
electrical control units, 10 drivers providing 20 diagnostic trouble
codes, 4 switches, 12 actuators and several connector blocks, wires,
fuses, diodes, resistors and relais. Altogether 86 physical components
are included, defining 143 single faults. The behavior model is built
out of 1816 variables and 1565 constraints.

To cover the self diagnostic capabilities of todays electronic con-
trol units, the driver models themselves contain several algebraic
loops including diodes, and nonlinear resistors. Those loops over-
lap with loops built of sensors, fuses and consumers. With pure local
propagation, not even a conflict can be found when checking the can-
didate “System OK” with respect to the symptom “diagnostic trou-
ble code xy set”. The time needed to compute a steady state for the
given system strongly depends on the operational state and the ana-
lyzed fault. The average time is about half a second on a 700 MHz
Pentium. 82% of the time is spent on local propagation, 6% on con-
straint net analysis and 12% on storage management. Computing a
diagnosis takes between three and ten seconds.

Among the improvements we added to the base algorithm, the
most significant is the graph decomposition step. If this step is dis-
abled, the diagnostic algorithm fails to return a satisfactory result in
reasonable time for the described model. The performance of the al-
gorithm also strongly depends on the criteria used for decision vari-
able selection. For example, if decision variable selection is not re-
stricted to cyclic variables, the average time to compute a diagnosis
in our example rises to several minutes. We have tested lots of selec-
tion strategies with models of very different size and structure. All
criteria proposed in Section 3.2 proved to be useful. However, the
optimal combination of them depends on the characteristics of the
model.

The benefits from prediction sharing between different branches
depend on the success of the graph decomposition step. The smaller
the identified subnets, the less the gains from prediction sharing. In
our example, the benefits are not significant. In some diagnoses the
gains are completely consumed by the range initialization overhead,
in other diagnoses about 10 percent of the propagation time can be
spared.

Figure 7. The model-based analysis tool RODON

5 Conclusion and Related Work

The limitations of pure local propagation have shown to be a sig-
nificant drawback of current model-based diagnostic systems. The
incompleteness of this kind of inference has prevented a wide spread
success of model-based technology in industrial applications. Often,
overestimation resulting from algebraic cycles can be limited by tun-
ing the model manually, but this kind of tuning increases the produc-
tion costs of models and counteracts the “no function in structure”
principle.

Methods combining local propagation on quantitative constraints
with dependency tracking have a long tradition in the application area
of analog circuit diagnosis. Early work concentrated on search space
reduction and efficiency aspects. In [4] a diagnostic system called
SOPHIE III is presented, which is specialized on single faults in DC
circuits. It uses conflicts as well as so called corrobations to direct the
search for diagnostic candidates. Further search space reduction is
achieved by distinguishing primary and secondary assumptions dur-
ing dependency tracking. The incompleteness of local propagation
is identified as a serious problem. As a pragmatic solution, de Kleer
and Brown propose to add circuit specific knowledge in the form of
heuristic rules to the knowledge base.

Another diagnostic system called Skordos is discussed in [8]. It ad-
dresses the difficulty of managing the tremendous number of possible
predictions in quantitative value set propagation algorithms. Value
sets are represented by inequalities. A process called hibernation de-
lays propagation of useless combinations of inequalities, until they
become relevant for diagnostic reasoning.

In recent years, several contributions have addressed the problem
of solving cyclic constraint structures by net transformation algo-
rithms (see e. g. [9] for a survey). By linearization, a linear system of
equations is obtained which can be solved by the Gauss-Seidel itera-
tive method. Polynomial systems can be transformed by Gröbner ba-
sis computation. A common framework for transformations based on
variable elimination called “Bucket Elimination” is presented in [6].
The problem with those transformations is that efficient algorithms
exist only for several more or less restricted classes of constraints.

For cyclic constraint systems in which transformation algorithms
fail (at least partially), the branch and prune algorithm provides an
interesting alternative. It is not restricted to a special domain or con-
straint language. The relations forming the behavioral model are not
required to have any further properties (such as continuity or differ-
entiability) besides the evaluation function. It provides for all model
variables complete ranges which approximate globally consistent do-

mains.
For application in model-based diagnosis, we have shown how an

ATMS can be supported.
In our experience, the simulation time is acceptable in most cases,

at least for offboard use. However, there are some situations, where
the performance could be further improved:

• In underdetermined systems, the resulting number of partitions
can grow exponentially with the recursion depth, causing high
simulation effort without significant narrowing. Additional termi-
nation criteria seem to help in this case.

• Cyclic structures in ill-conditioned systems can slow down con-
vergence of local propagation. Since the branch and prune algo-
rithm uses local propagation for pruning, this effect directly re-
duces the simulation performance. For such cases, we think that
the cooperation of different solvers, possibly involving even com-
puter algebra methods, might improve performance considerably.

This will be subject to future work.

REFERENCES
[1] Christian Bliek, Bertrand Neveu, and Gilles Trombettoni, ‘Using graph

decomposition for solving continuous CSPs’, Lecture Notes in Com-
puter Science, 1520, 102+, (1998).

[2] J. de Kleer, ‘Extending the ATMS’, Artificial Intelligence, 28(2).
[3] J. de Kleer, ‘An assumption-based TMS’, Artificial Intelligence, 28,

127–162, (1986).
[4] J. de Kleer and J.S. Brown, ‘Model-based diagnosis in SOPHIE III’,

(1992).
[5] J. de Kleer and B. C. Williams, ‘Diagnosing multiple faults’, Artificial

Intelligence, 32, 97–130, (1987).
[6] Rina Dechter, ‘Bucket elimination: A unifying framework for reason-

ing’, Artificial Intelligence, 113(1-2), 41–85, (1999).
[7] Matthew L. Ginsberg, ‘Dynamic backtracking’, Journal of Artificial In-

telligence Research, 1, (1993).
[8] David Jerald Goldstone, ‘Controlling inequality reasoning in a TMS-

based analog diagnosis system’, 206–211, (1992).
[9] L. Granvilliers, E. Monfroy, and F. Benhamou, ‘Symbolic-interval co-

operation in constraint programming’, in Proceedings of the 2001 inter-
national symposium on Symbolic and algebraic computation, pp. 150–
166, (2001).

[10] P. Van Hentenryck, D. McAllester, and D. Kapur, ‘Solving polynomial
systems using a branch and prune approach’, SIAM Journal on Numer-
ical Analysis, 34(2), 797–827, (April 1997).

[11] E. Hyvönen, Constraint Reasoning with Incomplete Knowledge, Ph.D.
dissertation, Helsinki University, 1991.

[12] Narendra Jussien and Patrice Boizumault, ‘Dynamic backtracking with
constraint propagation - application to static and dynamic CSPs’, in
CP97 Workshop on the Theory and practice of dynamic constraint sat-
isfaction, (1997).

[13] Narendra Jussien and Olivier Lhomme, ‘Dynamic domain splitting for
numeric CSPs’, in Proceedings of the 13th European Conference on
Artificial Intelligence, (1998).

[14] J. Mauss, V. May, and M. Tatar, ‘Towards model-based engineering:
Failure analysis with MDS’. Lecture at the ECAI 2000 (Berlin), 2000.

[15] Patrick Posser, ‘Hybrid algorithms for the constraint satisfaction prob-
lem’, Computational Intelligence, 9(3), 268–299, (August 1993).

[16] P. Struss and O. Dressler, ‘Physical negation: Integrating fault models
into the general diagnostic engine.’, in Proceedings 11th Int. Joint Con-
ference on Artificial Intelligence (IJCAI ’89), pp. 1318–1323, (1989).

[17] M. Tatar, ‘Diagnosis with cascading defects’, in Proceedings of the 12th
European Conference on Artificial Intelligence (ECAI’96), Budapest
(Hungary), pp. 511–518, (1996).

