
Introducing Data Reduction Techniques into
Reason Maintenance

Rüdiger Lunde
University of Applied Sciences Ulm

Prittwitzstrasse 10, 89075 Ulm (Germany)
email: r.lunde@hs-ulm.de

Abstract

Every problem which can be solved with a reason
maintenance system can – in theory at least – be
solved as well without it, using a simple generate
and test algorithm. Therefore, its main purpose is
to increase the efficiency of a reasoning system. In
this paper, we analyze the impact of problem char-
acteristics on the performance. For problems which
include reasoning about physical models on quan-
titative level, the complete dependency network
maintained by reason maintenance systems is iden-
tified as a major resource consumer. Based on that
analysis a new component called ‘value manager’ is
presented, which applies data reduction techniques
to limit dependency management costs and is es-
pecially designed to support iterative solvers. As
two examples of practical applications, experimen-
tal results from an automated FMEA generation run
for an automotive system and a diagnosis of a fly-
by-wire system are discussed.

1 Introduction
A reason maintenance system (RMS) is a book-keeping tool
supporting a problem solver. It tracks dependencies between
given and derived data during the inference process and con-
tributes to the search for solutions in two ways. Firstly, it
analyzes the causes of failures and thus helps to avoid useless
search in subspaces without solutions. Secondly, it caches in-
ferences and prevents the problem solver from redrawing the
same inferences again and again.

An RMS views data as propositional symbols and relation-
ships between the data as propositional clauses. This view is
independent of the actual meaning of the data for the problem
solver, which can be first or higher order, for example. Given
sets of assumptions, data, and clauses, the RMS derives the
belief status of every datum based on the current belief status
of the assumptions. An RMS works incrementally. After the
belief in some of the assumptions changes or a new clause is
added, the belief status of all affected data is updated with-
out starting from scratch. A contradiction is discovered if
the belief status of a special datum denoting falsity changes
from disbelieved to believed. Contradictions are immediately

signaled to the problem solver, and information about the re-
sponsible assumptions is attached to the signal.

The use of reason maintenance systems has a long tradition
in AI. Starting with the introduction of the non-monotonic
JTMS [Doyle, 1979], a wide range of different reason main-
tenance systems has been developed (e.g. monotonic JTMS,
ATMS, LTMS). They differ in the accepted types of clauses,
their support w.r.t. contradiction resolution, and the way the
belief status is represented in labels associated with data.
The assumption-based truth maintenance system (ATMS) [de
Kleer, 1986a][de Kleer, 1986b][de Kleer, 1986c] as part of
the general diagnostic engine (GDE) [de Kleer and Williams,
1987] has attracted much attention in the field of model-based
reasoning. It accepts Horn clauses and uses a special indexing
scheme to store the sets of assumptions a datum ultimately
depends on. It supports parallel search in different contexts
and is especially suited for problems with many solutions, if
all or several of them are of interest. This is usually the case in
explanatory problems, where we want to know all or at least
the most plausible causes for observed or assumed effects.

It is well known that the worst-case complexity of an
ATMS is exponential in the number of assumptions. Reason-
ing systems utilizing an ATMS spend a considerable amount
of time on label updates. Several extensions have been de-
veloped to improve the efficiency of the reasoning system as
a whole. Forbus and de Kleer [Forbus and de Kleer, 1988]
proposed a consumer control mechanism to focus inference
selection on interesting contexts. Additionally, Dressler and
Farquhar [Dressler and Farquhar, 1991] showed how the la-
bel update can be restricted to interesting contexts. Although
label completeness is lost, completeness with respect to the
current focus can still be guaranteed. Lazy label evaluation
[Kelleher and van der Gaag, 1993] delays the label update
until the problem solver shows interest in it. By combining
focusing and lazy label evaluation, some synergy effects can
be obtained [Tatar, 1994].

Reason maintenance systems have proven to be efficient
tools to support reasoning about qualitative abstractions of
real systems. However, when choosing lower levels of ab-
straction, two negative impacts on the efficiency of the rea-
soning system can be observed:

• The dependency management costs grow dramatically
due to the increasing absolute number of assumptions
and inferences needed for behavior prediction.

• The benefit achieved by the services of a reason main-
tenance system decreases because of the decreasing de-
gree of similarity between different contexts and the gap
between the true meaning of the derived data and the
reason maintenance system’s propositional view of it.

Both observations give reason to look for more efficient alter-
natives.

2 Reason Maintenance Systems seen from the
Perspective of Machine Learning

From the point of view of machine learning, an RMS plays
the role of a learning module. It tries to find out as much as
possible about the currently solved problem by collecting and
analyzing the inferences drawn so far.

In all reason maintenance systems memorizing plays a ma-
jor role. All inferences drawn so far are stored together with
their results in a dependency network. No attempt is made
to generalize the given information or to remove unimpor-
tant nodes. The main problem with this learning method is
that memory space grows monotonously and the management
overhead with it. So there is a tradeoff between the gains re-
sulting from learned information and the overhead to main-
tain the knowledge base. In large search problems, the effi-
ciency of the overall performance of an RMS based reasoning
system typically increases first, then reaches a maximum, and
decreases steadily afterwards.

It is obvious that maintaining a cache for all inferences ever
performed is inefficient for iterative solvers. To reduce mem-
ory consumption for intermediate results, the learning mod-
ule should abstract from dependencies on inference layer and
focus on the relationship between the assumptions defining
the interesting contexts and the final results obtained from
them. The ATMS already incorporates an efficient method
to compile dependency information given on inference layer
into an explicit representation of the relationship between as-
sumptions and derived data. For each datum, it maintains a
label which represents the set of all currently known consis-
tent combinations of assumptions supporting the derivation
of the datum. In contrast to the memorizing method used
for low level dependency tracking, the learning method used
here incorporates a generalization step. The combinations of
supporting assumptions are not enumerated directly but char-
acterized by a lower bound, which is updated after each infer-
ence step for all affected data. The label representation can
be viewed as a conceptual description of all consistent con-
texts to which the corresponding datum belongs, and the in-
cremental label update as a special kind of inductive concept
learning.

Since the label update algorithms do not necessarily re-
quire the availability of a complete dependency network, a
new class of dependency trackers can be defined which is
based only on the second learning method. In the following,
we discuss one special instance of this class.

3 The Value Manager
The value manager is a dependency tracking tool which is es-
pecially designed to support efficient reasoning about systems

on quantitative physical level. It features fast inference selec-
tion and label update during behavior prediction and negligi-
ble management overhead for intermediate results. The value
manager is based on Horn logic and also shares the label com-
putation algorithms with an ATMS, but does not maintain a
dependency network. Instead, it incorporates some new func-
tionality:

• It forgets. By applying data reduction methods, resource
consumption with respect to space and computation time
is significantly reduced.

• It focuses on one context at a time.

• It distinguishes between short-term and long-term mem-
ory management. Separate data buffers give fast access
to context specific data and use a common knowledge
base to exchange learned inference results.

The main functional difference w.r.t. a focused ATMS is that
the value manager actively controls resource consumption by
forgetting unimportant data. The task of selecting data for
removal from storage is seen here as a technical resource op-
timization task like garbage collection, rather than a mission
critical strategic task. Therefore, the control about data reduc-
tion is assigned to the value manager and not to the problem
solver. This design decision has significant consequences.

3.1 Consequences on the View of Data
A propositional view of data, which is common to all reason
maintenance systems, is not sufficient for the value manager.
If the value manager shall select data for removal, it must
have the necessary knowledge to estimate the importance of
data for further reasoning. This includes knowledge about the
true meaning of data as well as methods to detect and remove
redundancy. Since this knowledge cannot be formalized with-
out assumptions about the inner structure of a datum, confine-
ment to a certain kind of data is the price we have to pay for
the extended functionality.

In our application focus, state equations are the atomic
pieces of knowledge the problem solver reasons about. State
equations are pairs 〈v, d〉 containing a model variable and a
(possibly infinite) set of values which is a subset of the corre-
sponding variable domain. They represent propositions about
the possible values for a quantity of the physical system un-
der analysis in a certain context. Every state equation with an
empty value set denotes falsity. For effective data reduction,
the value manager needs at least to be able to compare value
sets for the same variable with respect to set inclusion. To re-
duce the communication overhead, the value manager should
also be able to intersect those value sets.

While the rigidity of information hiding between problem
solver and value manager is not as strict as in the classical ap-
proach, there is still some abstraction in the value manager’s
view of the inference process. For instance, the true meaning
of assumptions, which are used to define the contexts of in-
terest for the problem solver, is completely hidden from the
value manager. Within a diagnostic problem, different con-
texts may represent system states of different candidates as
well as state snapshots for dynamic systems at different points
in time, or a combination of both.

3.2 Consequences on Label Completeness
Whenever a dependency tracking unit decides to remove a
datum, it is possible that later on another justification may be
found by the problem solver for the same datum. Together
with the removed datum, the knowledge about its successors
in the dependency network is lost. Consequently, when a pre-
viously removed datum gets a new justification, label com-
pleteness of its successors is lost, at least as long as the con-
sequences have not been redrawn. Different strategies can be
imagined to handle gaps in a dependency network. Their effi-
ciency will strongly depend on the average size and absolute
number of gaps. Our data reduction strategies aim at keeping
memory consumption constant during iterative pruning loops
and will therefore in general lead to rather large gaps. In that
case, the usefulness of the dependency network itself can be
doubted. Consequently, the value manager does not main-
tain such a data structure at all. Instead, it merely maintains
compiled dependency information with respect to context-
defining assumptions in the labels associated with the data.
This reduces the overhead to zero when removing redundant
or unimportant data. The resources additionally required for
redrawing inferences depend on the desired degree of com-
pleteness. Completeness with respect to the original problem
is not a realistic goal when dealing with numeric constraint
networks, as is illustrated in Example 1 below. If we are sat-
isfied with at least one (possibly not minimal) justification per
datum, no redrawing is necessary at all during the investiga-
tion of a certain context. A slightly more liberal strategy sup-
presses the redrawing of consequences only for data which
is classified as unimportant by the value manager. Indepen-
dent of the chosen strategy, completeness of labels cannot be
guaranteed any more at any time, not even with respect to the
current focus.

Example 1 Let CN = 〈{x, y},R2, {c1, c2, c3, c4, c5}〉 be a
constraint network which contains the following constraints:

c1 : y = x + 1 c4 : y < 10
c2 : y = x ∗ 2 c5 : y < 10000
c3 : y > 3

Let further for all i ∈ {1, . . . , 5}, Ai denote the assump-
tion that ci holds. The first two constraints obviously have
only one solution: x = 1 and y = 2. Therefore, the first three
constraints cannot hold at the same time, and consequently,
{A1, A2, A3} is a conflict. But this conflict cannot be found
by local propagation because the variable domains are not
bounded. If we perform domain reduction based on the first
three constraints, the lower bounds of the variable domains
are pushed up steadily. After more than 2000 constraint eval-
uations, starting with c3 and than iterating over c1 and c2, it
becomes clear that no solution exists within the range of dou-
ble precision machine numbers. But even this result does not
guarantee that there is no solution at all. A fix point is never
reached. Also domain splitting does not help to identify the
conflict.

In spite of the high number of potential propagation steps,
which can be performed to compute reduced domains using
different parts of the constraint network, the datum 〈y, {}〉 de-
noting falsity can be obtained in less then 10 reduction steps

by simply focusing the propagation on the smallest value sets
known for each variable. Dependent on the order in which
the constraints are evaluated the corresponding label will be
{A1, A2, A3, A4} or {A1, A2, A3, A4, A5} respectively. Ob-
viously, both are not the minimal conflicts with respect to the
original constraint problem.

3.3 Focusing and Data Reduction Strategies
For efficient data management, focusing and data reduction
techniques have to cooperate in a productive way. While the
first technique tries to avoid the generation of unnecessary
or unimportant data, the second aims at getting rid of ballast
accumulating during the reasoning process. Both strategies
must be based on the same criteria of importance with respect
to the task at hand. To apply data reduction without focusing
does not make sense. In general, it is more efficient to avoid
the production of useless data in the first place than to remove
it afterwards. So data reduction produces a real benefit only
if applied to data which could not be avoided by focusing.

As described in Section 1, the current state of the art in
ATMS technologies includes focusing techniques which re-
strict inference drawing to consequences of interesting com-
binations of assumptions. Especially when reasoning about
numeric values, focusing on contexts of interest is necessary
for efficiency, but not sufficient. In Example 1 we have seen
that focusing inferences within a single context is required as
well.

Publications in the area of model-based reasoning which
address the subject of focusing within a single context are
rare. However, an equivalent to the idea to focus inferences
on most restricted values can be found in [Goldstone, 1992].
In this paper, a diagnostic system called Skordos is described.
The concepts discussed address the difficulty of managing
the tremendous number of possible predictions in quantita-
tive value set propagation algorithms. Intervals of continuous
domains are represented by inequalities like x ≤ 7. A pro-
cess called hibernation delays propagation of some inequal-
ities until they become important for diagnostic reasoning.
The importance of data is measured by its usefulness for find-
ing new conflicts within the focused contexts1. The proposed
strategy starts with the computation of consequences only for
those inequalities which are the mathematically strongest for
a certain variable in at least one focused context. All other
consequences are delayed until conflicts have been found.

The more carefully the inference process is controlled
within the focused contexts, the higher is the overhead for
inference selection. For instance, to decide whether to com-
pute consequences for a newly derived datum, in [Goldstone,
1992] an algorithm is used which determines for each focused
context the corresponding mathematically strongest inequali-
ties. The worst case complexity of that algorithm is quadratic
with respect to the number of focused contexts. To focus in-
ference drawing on those steps, whose results are valid in at
least one focused context, additional checks on the set of an-
tecedent nodes are necessary. While determining whether a

1In fact, [Goldstone, 1992] defines hibernation directly on diag-
nostic candidates, but replacing the set of candidates by an arbitrary
set of focused contexts is a straightforward generalization.

Figure 1: The value manager

set of data holds in at least one focused context can be or-
ganized very efficiently2, the costs of testing mathematical
strongness depend on the kind of data used. If state equations
with interval sets as values are used, the costs are in the same
order of magnitude as the costs of the inference step itself.

To avoid these extra costs, the value manager restricts rea-
soning to a single focused context at a time. Of course, this
increases the number of necessary focus adjustments. Instead
of investigating a set of candidates simultaneously, a diagnos-
tic problem solver using a value manager is forced to investi-
gate one candidate after another, state by state. Between ev-
ery two investigations, the focused context has to be changed.
The main reason why this strategy is more efficient for the
value manager is the fact that the value manager forgets. As
can be seen in Section 4, in relevant applications the amount
of data produced during the investigation of a context is by
orders of magnitude larger than the amount of data the value
manager remembers after the investigation. When changing
the focusing environment, still a search for the mathemati-
cally strongest data for the new focus is necessary. However,
the amount of data to be checked is strongly reduced since
no comparisons are necessary between intermediate results.
A second reason is the explosion of focused contexts, which
is caused by special assumptions needed for disjunction en-
coding (see Section 3.5). Without further focusing within the
set of all interesting contexts, the selection of useful inference
steps becomes extremely expensive.

The strategy of focusing on the mathematically strongest
data defines the importance of data with respect to the cur-
rently investigated contexts. For the development of efficient
data reduction strategies, this criterion is helpful, but we have
to take into account another aspect of importance: The rele-
vance of a datum for further context investigations.

The value manager provides a framework in which mem-
ory management is divided into short-term and long-term
management. While short-term memory management is
based on the former aspect of importance, the long-term
memory management is based on the latter. Since the value
manager does not maintain a dependency network, it can ef-

2In [Tatar, 1994] a 2vATMS is described which checks whether
a set of data holds within one of the given focused contexts in linear
time with respect to set size.

fectively separate the knowledge about the currently investi-
gated context from the knowledge about previously investi-
gated ones. We call the memory for context specific knowl-
edge context buffer and the memory for learned knowledge
about other contexts value database. Each memory main-
tains a set of conflicts, a set of value manager nodes – each
comprising a datum, an ATMS-like label and possibly some
other administrative information – and also means to look up
nodes for a given variable efficiently (see Figure 1).

Short-term memory management is performed during the
investigation of a context. Whenever a new datum together
with at least one justification is added to the context buffer,
the data reduction strategy decides whether to store it, to for-
get it, to combine it with one of the currently maintained
nodes for the same variable, or to replace some of these nodes
by it. This step includes value set manipulations as well as
ATMS-like label computations. Several strategies have been
tested during the development of our reference implementa-
tion. For models with a high proportion of quantitative re-
lations, the far most efficient one turned out to be a strat-
egy which computes intersections whenever possible and for
each variable only keeps the node with the most restricted
value set3. The main advantages of this strategy are the fast
convergence and the limited memory consumption, which re-
mains constant during propagation. While the value manager
is open for strategies which also keep other than the most
restricted value sets in memory, it expects all strategies to
compute the most restricted value set and provides a special
interface method to access the corresponding value manager
node.

Long-term memory management is performed during con-
text changes. Changing the focused environment of a context
buffer includes knowledge transfer between the buffer and the
value database in both directions. First, nodes which have
been added to the context buffer after the last context change
are selected for saving in the long-term memory. Adding
clones of those nodes to the value database can include some
reorganization, for example removing other nodes which are
not necessarily needed any more and are unlikely to be use-
ful in future. Then, the environments in the labels which are

3For debugging purposes, it is useful to maintain more than one
node in case of conflicting data.

maintained by the context buffer are restricted to subsets of
the new focused environment. Nodes with empty label are
removed from the buffer. Finally, nodes from the database
which are valid in the new focused context are cloned and
added to the buffer. This addition adjusts the labels of the
nodes to subsets of the new focused environment and makes
use of short-term memory management, which can include
intersection computations. The selection strategy of data to
be stored in the value database, as well as the memory reor-
ganization strategy, are not fixed within the value manager.
For the experiments in Section 4, a very simple strategy was
used. It adds all final context investigation results to the value
database without any reduction on data level.

3.4 Supporting Inference Selection
Besides the strategic conflict information to direct the prob-
lem solver’s search, the value manager also provides tactical
support on inference selection level. After adding a newly
derived state equation together with the corresponding Horn
justification to a context buffer, the need for computing its
consequences depends on whether the addition changed the
available knowledge about that variable or not. Since the
data reduction strategies of the value manager compare the
newly added data with existing data for the same variable, the
value manager can provide information about relevant value
set reductions without extra costs. For that purpose, each con-
text buffer maintains a list called open nodes. When adding
new data to a context buffer, all modified and all newly cre-
ated value manager nodes are added to that list. The problem
solver can access that list whenever convenient to select new
tasks for the agenda. After each access, the list is automati-
cally cleared. The list of open nodes is also modified by the
context buffer when changing the focused context. By track-
ing relevant changes during the update of the set of all main-
tained value manager nodes, all nodes which were affected
by the context change can be identified. Local propagation
benefits from that information, because the number of tasks
initially put on the agenda can be reduced.

It should be emphasized that the open node list mechanism
strongly differs from the consumer mechanism used in clas-
sical ATMS approaches (see [de Kleer, 1986c]). Both mech-
anisms have the same goal, namely to avoid unnecessary in-
ferences, but the means are quite different. The consumer
mechanism allows the problem solver to attach markers (so
called consumers) to RMS nodes which indicate the conse-
quences that should be computed for the node (and also con-
tain the code to perform the necessary inferences). Propaga-
tion is performed by selecting one of those markers, remov-
ing it from the corresponding RMS node and performing the
corresponding inferences. Advantages of this mechanism are
that no inference needs to be drawn twice, even after con-
text changes, and that the responsibility for completeness of
the inference control is completely assigned to one compo-
nent (the RMS). On the other hand, considerable management
overhead is generated for inferences with more than one an-
tecedent node. The more the inference process is focused
within a focused context, the more useless consumers are
created but never removed. For dependency trackers which
apply data reduction, the consumer mechanism is even less

suited since removing a node with an attached consumer may
affect completeness.

3.5 Disjunction Handling
To solve cyclic dependencies in physical systems, inference
methods which go beyond local propagation are needed. Cur-
rent approaches combine different techniques such as local
propagation, domain splitting and network decomposition.
Since results of domain splitting steps do not have Horn jus-
tifications, the value manager has to be extended to support a
branch&prune solver as described in [Lunde, 2005].

We first focus on the logical problem of computing sound
labels. Let L(eq) denote the label of the state equation eq. La-
bels are sets of sets of assumptions and have the same mean-
ing as within an ATMS. The logical relationship between two
split equations 〈x, d1〉 and 〈x, d2〉 resulting from splitting the
value set of a third equation 〈x, d〉 can be expressed by means
of two split assumptions A1 and A2. For both 〈x, di〉, we de-
fine L(〈x, di〉) = {e ∪ {Ai}|e ∈ L(〈x, d〉)}. Since both split
assumptions are related by disjunction, we can now define
split assumption elimination based on hyperresolution. Let
〈y, d1〉 be a consequence depending only on the first split as-
sumption A1 and 〈y, d2〉 a consequence depending only on
A2. A sound, minimal, and consistent label for 〈y, d1 ∪ d2〉
is obtained by removing supersets of contained environments
and known conflicts from the following label:

L = {e | e ∈ L(〈y, d1〉) ∧A1 /∈ e
∨ e ∈ L(〈y, d2〉) ∧A2 /∈ e
∨ ∃e1 ∈ L(〈y, d1〉) ∃e2 ∈ L(〈y, d2〉) :

e = e1 \ {A1} ∪ e2 \ {A2}}
Since falsity can be expressed by arbitrary state equations

which contain an empty value set, this specification also cov-
ers conflict handling.

The next question is how to control hyperresolution within
the value manager. The branch&prune algorithm investigates
in each recursion level the consequences of the split equations
〈x, d1〉 and 〈x, d2〉 in a sequence. Therefore, the problem
solver could easily navigate the context buffer through both
corresponding extended contexts (each defined by extending
the original focused environment by one of the split assump-
tions). Following this idea, hyperresolution inferences could
be realized as an extension of long-term memory manage-
ment. Unfortunately, this usage of the value manager dramat-
ically increases the number of context changes, and reduces
the effectiveness of long-term memory management, since in-
termediate results now find their way into the value database.
The resulting system will spend quite a large amount of time
with context changes.

Therefore, the context buffer is extended instead. This ex-
tension supports domain splitting within the context buffer
and eliminates the need to communicate with the value
database until the original context is completely investigated
or the problem solver loses the interest in it. The chosen
solution exploits the depth first control strategy used by the
branch&prune algorithm. In spite of maintaining just one set
of value manager nodes and one set of nogoods, the extended
context buffer maintains a tree called context tree which is

composed of context tree nodes. This tree reflects the hier-
archical structure of context extensions generated by domain
splitting operations. Each context tree node comprises a fo-
cused environment, a set of value manager nodes, a set of no-
goods, and optionally a split assumption and a split equation.
The root node is initialized and marked as current node when
changing the context. Child nodes are added to the current
tree node whenever split operations are performed. The prob-
lem solver gets means to navigate to certain tree nodes and
to evaluate their children. Evaluation is based on hyperres-
olution as described above and includes modification of the
content of the current tree node and removal of the evaluated
children.

Compared to an extension for general disjunction handling
as suggested in [de Kleer, 1986b], the expressive power of
the sketched functionality is rather limited. Nevertheless, it is
very efficient because no search is necessary to apply hyper-
resolution, and because it supports removal of assumptions
and data which are not needed anymore, without additional
costs.

4 Experimental Results
A Java implementation of the presented concepts has been
integrated into the commercial model-based engineering tool
RODON (see [Lunde et al., 2006]) and tested in various ex-
periments. The results of three of them are summarized in
the following. All measurements have been performed on a
standard PC with 2.2 GHz and 512 MB RAM.

4.1 Automated FMEA Generation for an
Automotive System

The analyzed system of the first experiment comprises the
electrical equipment of the right door of a current car se-
ries. The most important components are the electronic con-
trol unit, the exterior mirror assembly, the door lock assem-
bly, the window pane control motor, the switch assembly and
some bulbs. The corresponding Rodelica4 model is currently
used in a commercial project by a major German car manu-
facturer to generate decision trees for workshop diagnosis. It
comprises 167 subsystems and 580 atomic components, and
covers more than 60 fault codes within the electronic control
unit. The constraint network is composed of 8863 variables
and 7338 constraints.

In this experiment, we focus on fault effect prediction for
the operational state ‘window pane manually up’. This task
includes 288 state investigations; in 265 states, domain split-
ting is activated, which leads to 1290 investigations of ex-
tended contexts. Table 1 summarizes the obtained reduction
with respect to needed inference steps and computation time
when using the value manager. The efficiency gains are sig-
nificant even though no use is made of conflicts to direct a

4Rodelica is a dialect of Modelica, which is a standard-
ized object-oriented language to describe physical systems in a
component-oriented and declarative way (see www.modelica.org).
Rodelica differs from Modelica in some details since it uses con-
straints instead of differential algebraic equations to describe com-
ponent behavior.

search. The comparatively small context navigation time con-
firms the decision to focus on one context at a time.

computed data computation time
total ctx-nav total

[sec] [min:sec]
Without value manager 45181934 0 16:55

With value manager 1051622 6.0 1:22

Table 1: Impact of the value manager on simulation perfor-
mance

In spite of the large number of intermediate results, the
size of the value database is quite limited at the end of the
analysis. Only 23799 value manager nodes are maintained.
Justifications are not maintained at all, and the storage con-
sumption of the environments, which directly depends on the
maximal size of the assumption database, is also limited. All
in all 1611 assumptions are introduced during the analysis,
but thanks to the removal of split assumptions when evalu-
ating extended contexts, the size of the assumption database
never exceeds 609. As a consequence, the memory space for
label management is reduced by more than 50 percent and the
performance of label computations is improved.

4.2 Model-based Diagnosis of a Fly-by-Wire
System

The pitch elevator control system [Lunde, 2003] of the next
experiments is a typical fly-by-wire system. It consists of
an electronic control unit called primary flight control unit
(PFCU) which controls the angle of a pitch elevator surface
by means of an electro-hydraulic servo valve and a hydraulic
cylinder. The top-level layout of the system (see Figure 3)
also includes a power supply unit (PSU), three redundant po-
sition sensors, and some electrical wires. Figure 2 shows
the actuator part of the system in more detail. Here, electri-
cal signals are converted into hydraulic flows and finally into
mechanical movements. Besides the three main components,
some redundant components have been added to the design,
to keep the system in a safe state in case of faults. To control

Figure 2: The actuator part of the pitch elevator control sys-
tem

the surface angle, the PFCU compares the actual surface po-
sition with the required angle and uses the deviation to adjust
the position of the electro-hydraulic servo valve. These ad-
justments determine the movement of the piston in the cylin-
der, which finally changes the actual angle of the surface.

As an example of an interesting diagnostic case we ana-
lyze the observed response of the system to a control com-
mand from the cockpit which requires the surface angle to
change by 5 degrees. Starting with an initial angle of 0 de-
grees a movement into the right direction is observed but, due
to a defect, the movement does not stop at the angle of -5
degrees.5 We want to know which faults can explain the ob-
served behavior.

Our Rodelica model of the pitch elevator control system is
again component-oriented and exactly matches the structure
shown in Figures 2 and 3. The system behavior is defined
by 621 variables and 501 constraints. The main difference
with respect to the automotive system of the first experiment
is that this model is dynamic to a great extent. To provide
the PFCU with a realistic feedback from the controlled com-
ponents, difference equations are used in several parts of the
system, e.g. in the cylinder. They compute Euler steps for
the corresponding differential equations, which describe the
behavior on physical level. A second difference is that reli-
able predictions are achievable even without domain splitting.
Therefore, the experiments were performed with local prop-
agation only. Due to the fact that most dynamic state vari-
ables are continuous (e.g. the cylinder position), we cannot
expect too much efficiency gains by reusing results from pre-
vious state investigations. But here, the conflict computation
contributes to our application, since it is basically a search
problem.

In the second experiment, we simulate the response of the
system to the cockpit command in nominal mode. To this pur-
pose a sequence of 30 states is computed in which the initial
value ranges of the dynamic state variables of each state are
determined by the corresponding predecessor states and the
difference equations. After 25 states, the surface angle con-
verges at -5 degrees. Table 2 shows, that the value manager
still improves the simulation performance, though the gains
are not as impressive as in the automotive example. The high
absolute number of inferences highlights the importance of
data reduction.

computed data computation time
total ctx-nav total

[msec] [msec]
Without value manager 45318 0 1200

With value manager 30022 100 892

Table 2: Impact of the value manager on simulation perfor-
mance

In the last experiment, we use the GDE based diagnostic
engine of our reference implementation to diagnose the de-
scribed symptom. For this purpose, we restrict the range of

5In reality, this wrong behavior is detected by some monitors,
and fault compensation functions are activated. But this mechanism
is out of scope here.

Figure 3: The pitch elevator control system

the actual surface position variable in the thirtieth state to the
interval [-∞ -6] and start diagnosis on that data. The search
space is defined by the 26 component fault mode variables
and their possible values. The model contains 50 single faults.
The number of double faults is approximately 2400.

During the initial check of the candidate ‘system ok’ a con-
flict occurs in state 30 because the actual surface position is
predicted to be around -5 degrees, which is out of the spec-
ified range. The corresponding conflict is mapped back (see
e.g. [Tatar, 1996]) to the initial state. It comes out that nom-
inal mode assumptions of 11 components are involved. This
information reduces the search space, because it proves that
15 of the 26 suspicious components cannot explain the symp-
tom, at least not by single fault. During the diagnostic pro-
cess, the consistency of 61 candidates is checked with respect
to the specified symptom. Conflict back-mapping leads to
11 additional conflicts between the initial fault state assump-
tions. At the end, the following three minimal candidates re-
main, which are guaranteed to be the only explanations within
the scope of single and double faults.

• LVDT Exc C H disconnected

• actuatorLVDTSensor disconnected

• LVDT Act V1 disconnected & LVDT Act V2 discon-
nected

Figure 3 shows the top-level view of the pitch elevator con-
trol system with the corresponding components highlighted.
Our reference implementation needs 26.3 seconds for the
computation.

In this diagnosis, the conflict sets computed by the value
manager lead to a reduction of the search space size from
more than 2000 to just 61 candidates. This result emphasizes
that dependency tracking is very useful to solve explanatory
problems, even if the underlying model is characterized by
a low abstraction level and includes continuous dynamic be-
havior. The level of label completeness which is provided by
the value manager has shown to be adequate for this applica-
tion.

5 Conclusion
Quantitative reasoning about real physical systems usually
leads to a huge amount of intermediate results, which may
cause severe complications if the reasoning process is sup-
ported by a classical reason maintenance system. As shown
in this paper, effective data reduction is crucial for efficient
dependency tracking. The presented value manager is de-
signed as a light-weight alternative to an RMS. It completely
avoids inference caching and concentrates on ATMS-style la-
bel computation.

Although developed for a special model-based analysis
tool, the concept of the value manager is rather general. It
can be utilized to support any problem solver which reasons
about values of variables and provides Horn justifications for
all inferred results. The suggested solution for disjunction
handling requires the problem solver to evaluate disjunctions
in a special depth-first order. It is especially efficient in com-
bination with a solver which is based on domain splitting.

Two applications have been discussed, which confirm the
importance of data reduction and demonstrate the efficiency
of the value manager. The significant difference in their char-
acteristics also indicates that scalability is necessary for a
widespread applicability in reliability analysis and diagnosis.
The value manager is flexible regarding the actually used data
reduction strategies, and thus well-prepared for task specific
adaptations. Dependency tracking costs and the benefits ob-
tained for the analysis task at hand can be balanced effec-
tively.

The presentation in this paper focuses on performance with
respect to single processor computers, but special care has
been taken to support parallel computing as well. The num-
ber of context buffers within a value manager is not limited.
A problem solver can benefit from this feature by delegat-
ing candidate checking to different threads. Each thread can
open its own context buffer to access data. Since the data
within the buffers are physically separated from the data of
the commonly used value database, synchronization is only
needed when changing the context of one of the buffers.

References
[de Kleer and Williams, 1987] J. de Kleer and B. C.

Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32:97–130, 1987.

[de Kleer, 1986a] J. de Kleer. An assumption-based TMS.
Artificial Intelligence, 28:127–162, 1986.

[de Kleer, 1986b] J. de Kleer. Extending the ATMS. Artifi-
cial Intelligence, 28(2), 1986.

[de Kleer, 1986c] J. de Kleer. Problem solving with the
ATMS. Artificial Intelligence, 28(2):197–224, 1986.

[Doyle, 1979] J. Doyle. A truth maintenance system. Artifi-
cial Intelligence, 12:231–272, 1979.

[Dressler and Farquhar, 1991] Oskar Dressler and Adam
Farquhar. Putting the problem solver back in the driver’s
seat: Contextual control of the AMTS. In João P. Martins
and Michael Reinfrank, editors, Truth Maintenance Sys-
tems (ECAI-90 Workshop), volume 515 of Lecture Notes
in Computer Science, pages 1–16. Springer, 1991.

[Forbus and de Kleer, 1988] K. Forbus and J. de Kleer. Fo-
cusing the ATMS. In Proceedings of AAAI’88, pages 193–
198. MIT Press, 1988.

[Goldstone, 1992] David Jerald Goldstone. Controlling in-
equality reasoning in a TMS-based analog diagnosis sys-
tem. In Readings in model-based diagnosis, pages 206–
211. Morgan Kaufmann Publishers Inc., 1992.

[Kelleher and van der Gaag, 1993] Gerry Kelleher and
Linda van der Gaag. The lazy RMS: Avoiding work in
the ATMS. Computational Intelligence: An International
Journal, 9(3):239–253, 1993.

[Lunde et al., 2006] K. Lunde, R. Lunde, and B. Münker.
Model-based failure analysis with rodon. In Proceedings
of ECAI’06, Italy, 2006. (to appear).

[Lunde, 2003] K. Lunde. Ensuring system safety is more ef-
ficient. Aircraft Engineering and Aerospace Technology:
An international Journal, 75(5):477–484, 2003. ISSN
0002-2667.

[Lunde, 2005] R. Lunde. Combining domain splitting with
network decomposition for application in model-based en-
gineering. In Armin Wolf, Thom Frühwirth, and Marc
Meister, editors, 19th Workshop on (Constraint) Logic
Programming W(C)LP 2005, number 2005-01 in Ulmer
Informatik-Berichte, pages 29–40. University of Ulm,
Germany, 2005.

[Tatar, 1994] M. Tatar. Combining the lazy label evaluation
with focusing techniques in an ATMS. In Proceedings of
ECAI’94, Amsterdam, the Netherlands, 1994.

[Tatar, 1996] M. Tatar. Diagnosis with cascading defects. In
Proceedings of ECAI’96, Budapest, Hungary, pages 511–
518, 1996.

