
Combining Domain Splitting with
Network Decomposition

for Application in Model-Based Engineering

Rüdiger Lunde

R.O.S.E. Informatik GmbH, Schloßstr. 34, 89518 Heidenheim, Germany email: r.lunde@rose.de

Abstract. This paper discusses a new approach to combine the branch&prune
algorithm with constraint network decomposition methods. We present a version
of the well-known base algorithm which interleaves pruning, network decompo-
sition and branching and is especially suited for large constraint networks with
low connectivity. Special care is taken to support quantitative as well as qual-
itative and mixed domains. A sufficient criterion for the generation of decom-
positions called ‘independent solvability’ is defined, which guarantees maximal
domain reduction for finite domains. We present production rules to compute de-
compositions and give an account of the implementation of the algorithm within
a commercial model-based engineering tool.

1 Introduction

In current model-based engineering tools, constraint solving is used to predict the be-
havior of physical systems, based on component-oriented models. Constraints represent
physical laws, whereas variables are used to describe behavioral modes of components
as well as physical quantities or observable states of the system. Hybrid behavioral
models containing quantitative relations (equations, inequalities, interpolating splines)
as well as qualitative ones (tables or boolean formulas) give the modeler flexibility to
choose the abstraction level which is best suited to the analysis task at hand.

To support the engineering process, the constraint solver is embedded into a reason-
ing framework, which uses the behavior prediction as a means to perform its high-level
tasks. Typical tasks include predicting the expected behavior of a system over a period
of time, estimating the risk that a certain top event occurs, explaining an observed sit-
uation, or proposing appropriate test points for candidate discrimination in diagnosis.
Especially in diagnosis, models are often underdetermined. For complexity reasons, the
constraint solver is required to deliver a compact representation of the solution space
instead of point solutions of the network. Consequently, solvers used in this context
apply inference techniques rather than search techniques (for a classification, see [5]).

In our approach, domain reduction is used to generate compact representations of
solution spaces. The basic algorithm is a variant of the well-known branch&prune al-
gorithm [7], which is extended by a network decomposition step. The paper elaborates
on a decomposition strategy based on the so-called ‘independent solvability’ of subnet-
works, which is appropriate to the structure of the constraint networks in model-based
engineering.

The paper is organized as follows: We start with some preliminary definitions and
a formalization of the investigated constraint problem. In Section 3, our version of the
branch&prune algorithm is presented. Independent solvability of subnetworks as a suf-
ficient criterion for constraint network decompositions is discussed in Section 4. We
report briefly on the practical exploitation of the algorithm in Section 5, and conclude
with outlining related work and promising directions of further research.

2 Basic Definitions

We define a constraint network in accordance with the literature (see e.g. [5]), but take
special care to keep relation representations independent from variable domains and to
support various kinds of domains:

Definition 1 (constraint network). A constraint networkCN = 〈V,D, C〉 consists of
a finite set of variablesV = {v1, . . . , vn}, a domain composed of the corresponding
variable domainsD = D1 × . . . × Dn and a set of constraintsC = {c1, . . . , cm}.
All variable domainsDi are subset of a common universe domainU . Constraints are
relations defined on sets of variables which constrain legal combinations of values for
those variables. Each constraintc is represented by a pair〈Vc, Rc〉. Vc ⊆ V is called
the scope ofc and is accessed by the functionscope(c). The relationRc of c is a subset
of U |scope(c)| and is accessed byrel(c).

Discrete variable domains are supported as well as continuous variable domains.
If indices are not available, we writeDv to access the variable domain corresponding
to variablev. In the algorithms discussed below, domains are represented by vectors
of variable domains. If clear without ambiguity, those vectors are identified with the
denoted cross product.

The projection functionπi : 2D → 2Di is defined as usual. We writeπv instead of
πi where convenient. Obviously, for all domains and variablesπvD = Dv. The same
notation is used to project a subsetD′ of a domain onto a set of variables instead of a
single variable. For example,π{v3,v5}D = D3 ×D5.

Subnetworks ofCN are characterized by the following definition:

Definition 2 (subnetwork of a constraint network). Let CN = 〈V,D, C〉 be a con-
straint network andĈ ⊆ C a set of constraints. The subnetwork ofCN defined byĈ
is a constraint network〈V̂ , D̂, Ĉ〉 with the following properties:̂V =

⋃
c∈C scope(c),

andD̂ = πV̂ D. It is denoted bysn(Ĉ, CN).

An instantiatione of D is a set of value assignments, noted{〈v1, a1〉, . . . , 〈vn, an 〉}
with vi ∈ V andai ∈ Di. It is calledcomplete, if the set contains assignments for all
v ∈ V , andpartial otherwise. Thescopeof an instantiatione is defined by the set of
those variables which occur in an assignment ofe. Complete instantiations correspond
to elements ofD, whereas partial instantiations correspond to elements of projections
obtained fromD. For example, the instantiatione = {〈v1, a1〉, 〈v3, a3〉} corresponds
to the value vectore = 〈a1, a3〉, which is an element ofπ{v1,v3}D. Value vectors
corresponding to instantiations are indicated by overlining.

Fig. 1. Constraint net of two serial resistors. Nodes represent variables (dot-notation) and con-
straints

An instantiatione is said to satisfy a constraintc if scope(c) ⊆ scope(e) and
πscope(c){e} ⊆ rel(c). Each complete instantiatione of D, which satisfies all con-
straintsc ∈ C is called asolutionof CN . The set of all value vectors which corre-
spond to solutions ofCN form a subset ofD. It is called solution set ofCN and noted
sol(CN).

The space of all solutions of a given constraint network can be described by maxi-
mally reduced domains based on the following definition:

Definition 3 (maximally reduced domains).Let CN = 〈V, D,C〉 be a constraint
network andD̂ ⊆ D a domain.D̂ is called maximally reduced with respect toCN iff
∀v ∈ V : D̂v = πvsol(CN).

Our aim is to present efficient algorithms which compute maximally reduced do-
mainsD̂ for given constraint networks. The discussed algorithms try to reduce the range
of each variable as far as possible without losing any solution. If the given constraint
network has only one solution, a single value remains for each variable. In underde-
termined networks (which is common in model-based diagnosis, due to incomplete or
fuzzy information) a set of possible values is computed for each variable. For constraint
networks with discrete variable domains the domainD̂ can be computed exactly. How-
ever, when reasoning about continuous domains it is infeasible to compute more than
approximations of̂D.

3 The Branch and Prune Algorithm

Constraint networks which describe real systems on a physical level are in general hard
to solve because of cyclic dependencies, which occur in even the simplest aggregations
of components (see Fig. 1 for illustration). The branch&prune algorithm [7] solves
cycles by combining incomplete local constraint propagation [8] with recursive domain
splitting. Our version of that algorithm, which is shown in Fig. 2, follows the idea of
the original but adds a network decomposition step.

The algorithm starts with enforcing local consistency by means of the function
prune , which implements a local constraint propagation method. If local propagation
stops because one of the variable domains turns out to be empty, a domain composed of
empty variable domains is returned. Otherwise, the constraint network is checked with
regard to subnetworks with insufficiently reduced domains. The constraint sets which
represent those parts are computed by the functiondecomposeNetwork . It returns a
list of sets of constraints.

Domain branchAndPrune(〈V, D, C〉) {
D′ = prune(〈V, D, C〉)
if (¬empty(D′)) {

L = decomposeNetwork(〈V, D′, C〉)
for Ĉ across L {

〈V̂ , D̂, Ĉ〉 = sn(Ĉ, 〈V, D′, C〉)
〈D̂1, D̂2〉 = branch(〈V̂ , D̂, Ĉ〉)
if (D̂1 6= D̂2) {

D̂1′ = branchAndPrune(〈V̂ , D̂1, Ĉ〉)
D̂2′ = branchAndPrune(〈V̂ , D̂2, Ĉ〉)
for (v ∈ V̂)

D′
v = D̂1′

v ∪ D̂2′
v

if (empty(D′))
break

}
}

}
return(¬empty(D′)) ? D′ : 〈∅, . . . , ∅〉

}
Fig. 2. The branch&prune Algorithm

For each set of constraints, the corresponding subnetwork is determined and its
domain split into two parts by means of the functionbranch . If this operation was
successful, the algorithm branch&prune is applied recursively to both partitions, and
the set union of the returned variable domains is used to reduce the resulting domain.
The loop is aborted if the resulting domain is empty. In this case, a domain composed
of empty variable domains is returned.

The methodbranch can be implemented by selecting a so-called split variable
and splitting its domain. Important for the correctness of the algorithm is that it returns
either a pair of subdomains which partition the original domainD̂ or a pair of two equal
domains, and that the former is the case ifD̂ contains a discrete variable domain with
at least two elements.

We now discuss some basic features of the branch&prune algorithm. In the follow-
ing, we assume that the set of different variable domain representations is finite (but
not necessarily the domains themselves) and that the implementation ofdecompose-
Network terminates for all constraint networks.

It can easily be seen that the algorithm branch&prune terminates: Let<dom be
a well-founded ordering on domains which agrees with narrowing, partitioning and
subnetwork selection. One obvious realization for<dom compares the corresponding
variable domains with respect to set inclusion. Given such an ordering, in each recursive
call, domains become smaller with respect to<dom.

Let bp(〈V, D,C〉) = branchAndPrune(〈V, D,C〉). Obviously branch&prune is a
narrowing algorithm, which does not add new elements to the given domain at any
time:

Lemma 1. Let 〈V,D, C〉 be a constraint network.∀v ∈ V : bp(〈V,D, C〉)v ⊆ Dv.

As an important feature, the branch&prune algorithm does not remove any element
from any variable domain which occurs in a solution.

Lemma 2. LetCN be a constraint network.∀v ∈ V : bp(CN)v ⊇ πvsol(CN).

The quality of the domain reduction, which is obtained by our version of the branch&-
prune algorithm, strongly depends on the network decomposition strategy. In the next
section, we will introduce a sufficient decomposition criterion called ‘independent solv-
ability’, which guarantees maximally reduced domains for constraint networks over
finite domains. For decomposition algorithms based on this criterion, the computed do-
mains are identical to the domains which are computed by the original branch&prune
algorithm without network decomposition. The approximation accuracy for constraint
networks over continuous or mixed domains depends on the chosen interval bound rep-
resentation precision, the implementation of the methodbranch , and the used nar-
rowing operators. Let us assume that the methodbranch partitions a given domain
whenever possible with respect to the chosen interval bound representation, that all con-
straints describe continuous functions, and that the type of local consistency obtained
by the narrowing operators converges with decreasing variable domain diameters to
arc-consistency or a strong approximation like hull-consistency [1]. Then, the result-
ing domain converges with increasing bound representation precision to the maximally
reduced domain.

In practice, the required accuracy depends on the analysis task to solve. Often weak
approximations of maximally reduced domains suffice. If that is the case, the key to
scale the precision of the result with regard to necessary accuracy and available re-
sources lies in the splitting strategy used by the methodbranch . Our implementation
selects continuous variables as split-variables only if the absolute and the relative diam-
eters of their current domain bounds exceed specified thresholds.

Definition 4 (absolute and relative diameter).Let I = [a b] be an interval. The ab-
solute diameter ofI is defined bydiam(I) = b− a and the relative diameter is defined
by

diamRel(I) =

0 : a = 0 = b
∞ : a < 0 ≤ b ∨ a ≤ 0 < b

diam(I)
min(|a|,|b|) : otherwise.

(1)

Especially in underdetermined networks a careful selection of appropriate thresh-
olds is crucial for the success of the analysis.

4 Constraint Network Decomposition

When applying the branch&prune algorithm to possibly underdetermined constraint
networks of several thousand constraints, the main problem is efficiency. We address
this issue with a new structure-based approach.

In the field of continuous CSP solving, strong graph decomposition algorithms are
known [2] which are based on the Dulmage and Mendelsohn decomposition. The result
of this decomposition is a directed acyclic graph of blocks1. Unfortunately, those algo-
rithms cannot be applied here, due to the hybrid structure of our constraint networks.

1 Blocks correspond to subnetworks in our approach and generally include cycles. They are
connected by directed arcs which represent causal dependencies.

While conditions might be handled by a two step simulation approach, which separates
mode identification from continuous behavior prediction, inequalities are definitely not
covered by the Dulmage and Mendelsohn decomposition technique. Solvers based on
this decomposition techniques compute series of point-solutions, but fail to determine
complete ranges for variables in underdetermined networks.2

The decomposition criteria proposed here are much weaker, but do not impose re-
strictions on the type of relations used. Their aim is to identify parts of the constraint
network which can be solved sequentially, one after the other. Besides the graph in-
formation obtained from the constraint network structure, we integrate another source
of information, namely, the current value ranges of the variables. Since the ranges are
subject to change during the recursive constraint solving process, graph decomposition
is not applied as a preprocessing step, but is performed anew after each pruning step.3

4.1 Graph Notions

The static dependency structure of a constraint networkCN = 〈V,D, C〉 is represented
by an undirected bipartite graphG calledconstraint graph ofCN . The set of vertices
is defined by the union of all variables and all constraints inCN . Undirected edges
connect each constraint with the variables of its scope. We represent undirected edges
by sets. So we get

G = 〈V ∪ C, {{c, v} | c ∈ C ∧ v ∈ V ∧ v ∈ scope(c)}〉.

For the computation of maximally reduced domains, dependencies between vari-
ables whose domains are not uniquely restricted are of special interest. We call a vari-
ablev relevantiff |Dv| > 1. ReplacingV by the set of all relevant variablesVr ⊆ V
in the definition above, a subgraph ofG is obtained which we callrelevant subgraph of
CN .

Fig. 3. A relevant subgraph

The complexity of the task to compute maximally reduced domains for a given
constraint system strongly depends on the structure of its relevant subgraph. If the graph
is acyclic pure local propagation is sufficient, as the following theorem states.

2 One reason for this lies in hidden cycles between different blocks. While causality between
different blocks is cycle-free, dependencies are not. In general, the corresponding undirected
version of the block graph is cyclic.

3 Implementations can profit from the monotonic refinement of ranges by reusing graph analysis
results gained one recursion level up.

Theorem 1. Let CN = 〈V,D, C〉 be a constraint network with a non-empty domain.
If CN is arc-consistent and its relevant subgraph acyclic, thenD is maximally reduced
with respect toCN .

Proof. Let CN be arc-consistent and its relevant subgraphG be acyclic. Obviously
∀v ∈ V : Dv ⊇ πvsol(CN). We show that∀v ∈ V : Dv ⊆ πvsol(CN).

Let Cr ⊆ C be the set of all constraints, whose scope contains at least one relevant
variable. SinceCN is arc-consistent, each complete instantiation ofD which satisfies
all c ∈ Cr also satisfies allc ∈ C \ Cr. Hencesol(CN) = sol(〈V, D,Cr〉) and it
suffices to show that∀v ∈ V : Dv ⊆ πvsol(〈V, D,Cr〉).

By precondition, each variable domain contains at least one value. IfCr is empty,
all complete instantiations ofD are solutions of〈V, D,Cr〉 and there exists at least one.
Hence∀v ∈ V : Dv ⊆ πvsol(〈V, D, Cr〉).

Otherwise letv ∈ V and a ∈ Dv be chosen arbitrarily. We have to prove that
there exists a solution of〈V,D, Cr〉 which contains the assignment〈v, a〉. Let Gr be
the relevant subgraph ofsn(Cr, CN). Gr contains at least one constraint and a relevant
variable which is connected to it.

Case 1:v is a vertex ofGr. SinceG is acyclic,Gr is acyclic too. Hence, we can
arrange its nodes as a forest, in which one of the trees is rooted byv. Nodes with even
depth are variables and with odd depth constraints. Let<Cr be a total ordering on
the constraint vertices which agrees withdepth, and for each instantiatione let mc(e)
denote the minimal constraintc with respect to<Cr which is not satisfied.

Let us now assume that there is no solution of〈V, D,Cr〉 which contains the as-
signment〈v, a〉. Among the complete instantiations ofD which contain〈v, a〉, there
must be an instantiatione with the property thatc = mc(e) is maximal with respect
to <Cr . SinceCN is arc-consistent, regardless of the value assignment which is used
in e for the parent variablevp of c in Gr, there must exist value assignmentses for all
other variables inscope(c) such thatc is satisfied. By replacing ine the assignments
for all variables inscope(c) \ {vp} by es, we obtain a new instantiatione′ with differs
from e in some assignments for the child variables ofc in Gr. Since it satisfiesc and
(like e) all smaller constraints with respect to<Cr , we getmc(e′) >Cr mc(e), which
is a contradiction to our assumption. So there must be a solution of〈V,D, Cr〉 which
contains the assignment〈v, a〉.

Case 2:v is not a vertex ofGr. Let v′ be a variable vertex ofGr anda′ ∈ Dv′

chosen arbitrarily. As proved in case 1 there exists a solutione of 〈V,D, Cr〉 which
contains〈v′, a′〉. Sincev is irrelevant,Dv = {a}. We conclude thate must contain the
assignment〈v, a〉. 2

4.2 Independent Solvability

When searching for realizations ofdecomposeNetwork , the major motivation is the
reduction of computational costs to compute maximally reduced domains. The smaller
the resulting subnetworks, the better. But we have to be careful not to loose too much
narrowing quality, compared to the branch&prune variant without network decompo-
sition. We definitely want to guarantee maximally reduced domains for constraint net-
works over finite domains.

We start by defining a class of decompositions called independently solvable de-
compositions. Based on the definition, a sufficient but not necessary criterion for the re-
alization ofdecomposeNetwork is given. The problem of computing independently
solvable decompositions is addressed by providing a set of production rules.

Definition 5 (decomposition of a constraint network).Let CN = 〈V, D,C〉 be a
constraint network,L a set of mutually disjoint subsets ofC. The set of subnetworks
Λ =

⋃
Ĉ∈L{sn(Ĉ, CN)} is called a decomposition ofCN . Λv ⊆ Λ denotes the set of

all constraint networks inΛ which contain the variablev.

Definition 6 (independent solvability).LetCN = 〈V, D, C〉 be a constraint network,
Λ a decomposition ofCN . LetDis ⊆ D be a domain whose variable domains are com-
puted from the maximally reduced domains for the corresponding constraint networks
in Λ by intersection:∀v ∈ V : Dis

v =
⋂

cn∈Λv
πvsol(cn) ∩Dv

Λ is called independently solvable, iffDis is empty or maximally reduced with re-
spect toCN .

An implementation ofdecomposeNetwork can be based on independent solv-
ability. In this case, for any constraint networkCN over finite domains,decompose-
Network computes a vector〈C1, . . . , Cn〉with the property that

⋃
1≤i≤n{sn(Ci, CN)}

is an independently solvable decomposition ofCN . In the followingbpis(CN) denotes
the result of a variant of the branch&prune algorithm which uses an independent solv-
ability baseddecomposeNetwork implementation.

Theorem 2 (correctness of branchAndPrune).The branch&prune algorithm returns
maximally reduced domains for all constraint networks over finite domains if the im-
plementation ofdecomposeNetwork is based on independent solvability.

Proof. (Sketch) Thanks to Lemma 2, it suffices to show, that for all domainsD which
are composed of finite variable domains, the following proposition holds:

∀C ∀V ∀v ∈ V : bpis(〈V,D, C〉)v ⊆ πvsol(〈V,D, C〉). (2)

The proof is a strong induction over the domain size. The central loop invariant is

empty(D′) ∨ ∀v ∈ V : D′
v ⊆

⋂

cn∈Λi
v

πvsol(cn) ∩Dpr
v ,

wherei is the number of previously performed loop body evaluations,Dpr the contents
of the algorithm variableD′ after pruning,Λi =

⋃
j≤i{sn(Cj , 〈V,Dpr, C〉)}, andCj

the components of the vector which was returned bydecomposeNetwork . 2

Consequently, independent solvability is a sufficient criterion to guarantee maxi-
mally reduced domains for constraint networks over finite domains. We now face the
task how to compute such decompositions. The Lemmas 3 – 6 are called production
rules for independently solvable decompositions. They suggest to start with a trivial
decomposition, and to refine it subsequently by removing or splitting contained subnet-
works.

Fig. 4. Constraint removal and subnetwork removal

Lemma 3 (trivial decomposition). LetCN = 〈V, D, C〉 be a constraint network. The
set{sn(C, CN)} is an independently solvable decomposition ofCN .

Proof. (Sketch) IfD is empty,{sn(C, CN)} is an independently solvable decompo-
sition of CN . Otherwise let〈V̂ , D̂, C〉 = sn(C, CN). SinceDv is not empty for all
v ∈ V \ V̂ , every solution of〈V̂ , D̂, C〉 which contains the assignment〈v, a〉 can be
converted into a solution of〈V,D, C〉 with the same assignment and vice versa. So we
get for allv ∈ V̂ , πvsol(〈V̂ , D̂, C〉) = πvsol(〈V, D,C〉), which implies the lemma.2

Many interactions between different components depend on the current operational
or fault state of the system. An open switch disconnects two parts of a circuit, the same
is true for a closed valve in a hydraulic system or a broken belt in an engine. Using
conditional constraints to express state-dependent relations allows to disconnect parts
of the networks, which are not independent in general, but with respect to the currently
analyzed state.

Lemma 4 (constraint removal). Let CN = 〈V,D, C〉 be a constraint network,Λ]
{sn(Ĉ, CN)} an independently solvable decomposition ofCN andc ∈ Ĉ a constraint,
whose condition cannot be fulfilled by the instantiations ofD. ThenΛ ∪ {sn(Ĉ \
{c}, CN)} is an independently solvable decomposition ofCN .

Proof. Sincec is satisfied by any instantiatione with scope(e) ⊇ scope(c), we get
sol(sn(Ĉ \ {c}, CN)) = sol(sn(Ĉ, CN)) which implies the lemma. 2

As stated by Theorem 1, domains of arc-consistent acyclic networks are maximally
reduced. Therefore, such subnetworks can be removed from an independently solvable
decomposition. Since the branch&prune algorithm performs local propagation before
splitting the network, it can provide arc-consistency for certain subnetworks (e.g. sub-
networks over finite domains).

Lemma 5 (subnetwork removal).LetCN be a constraint network andΛ] {ĈN} an
independently solvable decomposition ofCN . If ĈN is arc-consistent and its relevant
subgraph acyclic, thenΛ is an independently solvable decomposition ofCN .

Finally, subnetworks whose relevant subgraphs do not overlap can be split, as stated in
the last production rule.

Lemma 6 (subnetwork splitting). LetCN be a constraint network,̂CN = sn(Ĉ, CN)
a subnetwork ofCN andΛ] {ĈN} an independently solvable decomposition ofCN .
Let furtherC1]C2 = Ĉ be a partitioning ofĈ andCN i = sn(Ci, CN) (1 ≤ i ≤ 2) the

Fig. 5. Subnetwork splitting

corresponding subnetworks. If the relevant subgraphs ofCN1 andCN2 do not overlap,
thenΛ ∪ {CN1, CN2} is an independently solvable decomposition ofCN .

Proof. (Sketch) Let〈V,D, C〉 = CN and〈V i, Di, Ci〉 = CN i for 1 ≤ i ≤ 2. Since
Di

v = Dv for all variablesv ∈ V i, and|Dv| = 1 for all common variablesv ∈ V 1∩V 2,
the union of all value assignments contained in any pair of solutionsei ∈ sol(CN i)
(1 ≤ i ≤ 2) forms a solutione of ĈN .

The rest of the proof instantiates the definition of independent solvability forΛ ∪
{CN1, CN2} andΛ] {ĈN} and makes a case differentiation about whethersol(ĈN)
is empty or not. 2

5 Experimental Results

We have integrated a Java implementation of the presented concepts into the commer-
cial model-based engineering tool RODON.

To demonstrate the usage of the branch and prune approach in our application focus,
we have chosen a diagnostic problem. Given a model of a real system and a symptom
describing some abnormal state, the diagnostic module of RODON performs a conflict
directed search for diagnostic candidates. The results presented in Table 1 are based
on a quantitative model of an automotive exterior lighting system (see Fig. 6). It con-
sists of three electrical control units, 10 drivers providing 20 diagnostic trouble codes,
4 switches, 12 actuators and several connector blocks, wires, fuses, diodes, resistors
and relays. Altogether 86 physical components are included, defining 143 single faults
including unknown fault modes for all connector boxes. The behavior model is built out
of 1816 variables (most of them quantitative and unbounded) and 1565 constraints.

The first diagnosed symptom (4) describes the observation that two rear lights are
dimmed which can be explained for example by a disconnected ground node. RODON
checks 15 diagnostic candidates and returns five of them which are consistent with the
given symptom. The second symptom (3) represents a partial system state in which two
side marker fault codes indicate a short to ground failure. Here 18 diagnostic candidates
are checked and two returned, including a multiple fault. For both symptoms behavior

Fig. 6. The model-based engineering tool RODON

prediction based on pure local propagation fails due to a large number of algebraic
cycles.

Table 1 shows that while the number of successful network decompositions (#splits)
is limited in the presented example runs, the impact on the number of recursive solver
calls (#propagations) as well as the overall time to compute the diagnosis (t, measured
on a Pentium 4 with 1.1GHz) is significant. We have tested the algorithm in different
analysis tasks with various models including much larger ones. As one would expect,
the performance gains differ from case to case, but the presented results seem to be typ-
ical for the average case. Network decomposition has shown to reduce execution time
significantly when underconstraint states are investigated. The smaller the diameters
used to select split variables are, the more computation time can be saved.

Task Characterization Without Decomposition With Decomposition
Symptomdiam diamRel #propagations t [sec] #splits#propagationst [sec]

4 1 5 100 5.4 7 80 1.9
4 0.01 1 954 11 7 204 3
4 0.01 0.1 99056 1209 7 4768 34
3 1 5 8453 66 5 261 3.5
3 0.01 1 > 55000 > 1000 5 21821 190

Table 1.Performance gained by network decomposition during diagnostic runs

6 Conclusion and Related Work

Reducing domains in large cyclic constraint structures is generally a hard task, espe-
cially if the system includes continuous variables. The currently known inference meth-
ods can be divided into algebraic and numeric methods.

Several contributions have addressed the problem of solving cyclic constraint struc-
tures by algebraic transformation algorithms (see e. g. [6] for a survey). By linearization,

a linear system of equations is obtained which can be solved by the Gauss-Seidel itera-
tive method. Polynomial systems can be transformed by Gröbner basis computation. A
common framework for transformations based on variable elimination called “Bucket
Elimination” is presented in [4].

Numeric methods reduce variable domains by combining local consistency criteria
with some kind of recursive trial-and-error strategy. The branch&prune algorithm dis-
cussed in this paper splits domains and tests local consistency of the resulting boxes.
Other numeric methods shift the bounds of variable domains until inconsistency is de-
tected (see e.g. [3]).

While algebraic methods can only be applied to more or less restricted types of
constraints, numeric methods suffer from their worst-case complexity, especially when
applied to large underconstraint networks. In this paper, we have presented a structure-
based approach to improve the performance of the branch&prune algorithm by defining
a class of state dependent network decompositions called ‘independently solvable de-
compositions’ and providing production rules to compute instances of it. The decompo-
sitions allow to solve independent parts sequentially instead of recursively, and thereby
reduce recursion depth significantly. Parts which are already maximally reduced are
identified by cycle analysis and removed from the network. These optimizations in-
crease significantly the size of models whose solution is feasible in practice.

The class of independently solvable decompositions is very general and can improve
other numeric domain reduction methods as well. Nevertheless, one obvious limitation
of all decompositions which can be derived by the provided production rules is, that
the contained subnetworks do not share any common relevant variable. That is partly
because the production rules do not span the complete class of independently solv-
able decompositions. But the required notion of independence also limits the available
decompositions more than necessary. We are currently working on relaxations of this
criterion.

References

1. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited. InProceedings
Int. Logic Programming Symposium, 1994.

2. Christian Bliek, Bertrand Neveu, and Gilles Trombettoni. Using graph decomposition for
solving continuous CSPs.Lecture Notes in Computer Science, 1520:102+, 1998.

3. Lucas Bordeaux, Eric Monfroy, and Frederic Benhamou. Improved bounds on the complexity
of kB-consistency. InIJCAI, pages 303–308, 2001.

4. Rina Dechter. Bucket elimination: A unifying framework for reasoning.Artificial Intelligence,
113(1-2):41–85, 1999.

5. Rina Dechter.Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence.
Morgan Kaufmann, May 2003.

6. L. Granvilliers, E. Monfroy, and F. Benhamou. Symbolic-interval cooperation in constraint
programming. InProceedings of the 2001 international symposium on Symbolic and algebraic
computation, pages 150–166, 2001.

7. P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a branch
and prune approach.SIAM Journal on Numerical Analysis, 34(2):797–827, April 1997.

8. A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems.Artificial Intelligence, 25, 1985.

