
ar
X

iv
:0

90
2.

29
75

v1
 [

cs
.A

I]
 1

7
F

eb
 2

00
9

Writing
Positive/Negative-Conditional Equations

Conveniently

Claus-Peter Wirth, R̈udiger Lunde

Searchable Online Edition
December 22, 1994

SEKI-WORKING-PAPER SWP–94–04 (SFB)

Fachbereich Informatik,
Universitæt Kaiserslautern,

D–67653 Kaiserslautern

Abstract: We present a convenient notation for positive/negative-conditional equations. The idea is to
merge rules specifying the same function by using case-, if-, match-, and let-expressions. Based on the pre-
sentedmacro-rule-construct, positive/negative-conditional equational specifications can be written on
a higher level. A rewrite system translates themacro-rule-constructs into positive/negative-conditional
equations.

Contents

1 Introduction 1

2 Examples 8

3 Syntax 11

4 Semantics 13

References 21

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

http://arXiv.org/abs/0902.2975v1

1

1 Introduction

We present amacro-rule-construct for convenient specification with positive/negative-condi-
tional equations as presented in Wirth & Gramlich (1993). Though separate equations building
up the definition of one single function are advantageous under several theoretical and practical
aspects, this separation does not correspond to the “natural” way of defining functions. As equa-
tional specification requires every reduction rule to be defined explicitly, various repetitions of
common sub-expressions occur. In specifications with positive/negative-conditional equations,
moreover, case distinctions lead to frequent numerous repetitions of only slightly changed left-
hand sides and condition lists. This is rather tedious for the specifier and a source of errors. It
also hides the actual structure of the specification.

To overcome these problems we introduce amacro-rule-construct for achieving the following
aims:

• Concise notation: The specifier should be able to express thesharing of expressions in the
specification language instead of having to spread copies ofa common sub-expression all
over a function’s definition.

• Logical modularization: Reduction rules for the same function should be combined and
structured hierarchically.

• Explicit representation of case distinctive structures: The knowledge the specifier has in
mind should be made explicit.

• Free choice of specification level: The language should alsoallow equational specification
without using the structural features.

To explain some ideas of our approach we will use the following rules:

delete x nil = nil
delete x cons y k = delete x k ←− x = y
delete x cons y k = cons y delete x k ←− x 6= y
delete x l = l ←− memberp x l 6= true

2

The main features of ourmacro-rule-construct are:

• Conditions of equations are written as lists and characteristic functions as predicates.

For example the lastdelete-rule above may be written

(delete x l) = l ←− ((not (memberp x l)))

• Contraction of right-hand sides and conditions into a new “meta-term”, changing the order
of appearance:

Instead of

delete x cons y k = delete x k ←− x = y

we write

(delete x (cons y k)) = (case ((= x y)) (delete x k))

• Introduction of match-conditions(@ VAR TERM), which bind the variables in the term
TERM by a required match fromTERM to the value of the variableVAR. This has the ad-
vantage that all left-hand sides of equations specifying the same function can be written in
the same way.

The rules of ourdelete-specification can now be written like this:

(delete x l) = (case ((@ l nil)) nil)

(delete x l) = (case ((@ l (cons y k))
(= x y)) (delete x k))

(delete x l) = (case ((@ l (cons y k))
(# x y)) (cons y (delete x k)))

(delete x l) = (case ((not (memberp x l))) l)

The match-atom(@ VAR TERM) connects the rule’s variableVAR with those variables
that are introduced byTERM and may occur to the right of the match-atom. For avoiding
reference problems, the variables inTERM must not occur to the left of(@ VAR TERM)
in the rule.

This restriction can be weakened to apply only to those variables that are not properly
influenced by some let- or match-atom. EspeciallyVAR may occur inTERM and to the left
of (@ VAR TERM). E.g. in the above rules, we could replace thekwith l. In this case, the
occurrences ofVAR in the second argument of(@ VAR TERM) have the same meaning
as the occurrences ofVAR to the right of(@ VAR TERM), which is different from the
meaning ofVAR in the first argument of(@ VAR TERM) having the same meaning as the
occurrences ofVAR to the left of(@ VAR TERM). Thus (in case ofVAR occurring in
TERM) the borderline of the meaning ofVAR in the rule goes right through the match-atom.

3

If, however,VAR does not occur inTERM, then the meaning ofVAR to the left and to the
right of the match-atom is the same. This persistence of the meaning ofVAR can be useful.
As an (not really convincing) example the firstdelete-rule could be written:

(delete x l) = (case ((@ l nil)) l)

• A let-expression(let TERM VAR) may occur in condition lists and introducesVAR
as a macro forTERM.

Each of the expressions(@ VAR2 TERM1) and(let TERM2 VAR1) binds the variables
occurring in its second argument (TERM1, VAR1, resp.) with the scope being the rest of
the rule. If one of these variables is already bound in the context of the expression, then
its old binding is lost in the scope of the expression. Since this is a common source for
bugs in specifications, the specifier should1 be warned if such a re-binding occurs. E.g.
(let (cons x l) l) re-bindsl to the term(cons x l) wherel refers to the old
binding ofl, which is lost for the rest of the rule. Similarly, ifcons is the top symbol
of l, then(@ l (cons x l)) bindsx to the first argument ofl and re-bindsl to the
second argument of the old binding ofl, which again is lost for the rest of the rule.

The translation into rules removes an atom(let TERM2 VAR1) by substitutingTERM2

for all occurrences ofVAR1 to the right of the atom. Similarly, an atom(@ VAR2 TERM1)
is removed by substitutingTERM1 for all occurrences ofVAR2 to the left and (unlessVAR2

occurs inTERM1) to the right of the atom.2

• Equations with the same left-hand side are merged:

(macro-rule (delete x l)
(case

((@ l nil))
nil

((@ l (cons y k))
(= x y))

(delete x k)

((@ l (cons y k))
(# x y))

(cons y (delete x k))))

1For the specifier who really wants to write(@ l (cons x l)) and does not want to be warned all the time,
there is another match-atom having the form(@@ VAR2 TERM1). It behaves similar to(@ VAR2 TERM1) but
does not warn ifVAR2 occurs inTERM1, since it un-bindsVAR2 before it binds the variables inTERM1 via matching
TERM1 to the old binding ofVAR2.

2Similarly, an atom(@@ VAR2 TERM1) is removed by substitutingTERM1 for all VAR2 to the left the atom.

4

• Negatible conditions may be used in the (conjunctive) condition lists ofcase-with-else-
andif-expressions. The two latter cases of the above macro-rule-expression can be com-
bined into:

...
((@ l (cons y k)))
(if ((= x y))

(delete x k)
(cons y (delete x k)))

...

For a condition list of lengthn + 1 an “if”-expression savesn +1 condition literals and
n repetitions of the meta-term of the else-case in the specification:

(macro-rule l
(if (L0 ... Ln)

r0

r1))

written in form of unstructured conditional equations is much longer:

l = r0 ←− L0 ... Ln

l = r1 ←− (not L0)
l = r1 ←− (not L1)
...

...
...

l = r1 ←− (not Ln)

For acase-with-else-expression the saving has the complexity of the product of the
lengths of the condition lists.

• The possibility of nestlingcase- andif-expressions allows a quadratic saving in the
number of condition literals:

(macro-rule l
(if (L0) r0

(if (L1) r1

...
...

(if (Ln) rn

rn+1)...)))

written in form of unstructured conditional equations is much longer:

l = r0 ←− L0

l = r1 ←− (not L0) L1

...
...

...
l = rn ←− (not L0) ... (not Ln−1) Ln

l = rn+1 ←− (not L0) ... (not Ln−1) (not Ln)

5

• Propositional logic expressions using “not”, “ and”, and “or” may occur in condition
lists. For example

(macro-rule l
(if (L0 ... Ln)

r0

r1))

is equivalent to:

(macro-rule l
(case

(L0 ... Ln)
r0

((or (not L0) ... (not Ln)))
r1))

Note that the positive/negative-conditional rule system,denoted by anor-conditioned case
contains in general more than one conditional equation differing only in the condition part.
As we do not provide a certain order between positive/negative-conditional equations it is
of no importance in which order the arguments are supplied intheor-expression unless
its negation becomes relevant due to an outer “not” or a following else-case. In the
denoted rule system theand-expression behaves rather different: As it refers to only one
conditional equation, the order of appearance of argumentsis preserved in the condition
list.

• A “sequential”(or* L1 ... Ln) is also placed to the specifiers disposal. This expres-
sion guarantees, that all arguments from L0 to Li−1 are not fulfilled when the validity of
Li is checked. To illustrate the difference betweenor andor* a characteristic function is
specified. It tests, whether all elements in a list are equal.Here we assume(car (cons
x l)) = x, (cdr nil) = nil (!) and (cdr (cons x l)) = l. The
specification ofcar need not necessarily be complete.

(macro-rule (equal-l l)
(if ((or* (= (cdr l) nil)

(and (equal-l (cdr l))
(= (car l)

(car (cdr l))))))
true
false))

The corresponding conditional equations for thetrue-case are:

(equal-l l) = true ←− (cdr l) = nil
(equal-l l) = true ←− (cdr l) 6= nil,

(equal-l (cdr l)) = true,
(car l) = (car (cdr l))

The condition list of the second equation contains the negated first argument ofor* besides
the second one. If anor-expression were used in spite of theor* a termination problem
would occur because this first negated condition would be removed:

(equal-l l) = true ←− (equal-l (cdr l)) = true,
(car l) = (car (cdr l))

6

As the dual ofor*, an and*-expression is also included. Theand- and theand*-
expression are equivalent with respect to the positive/negative-conditional rules they de-
note unless its negation becomes relevant due to an outer “not” or a followingelse-case.
Theand*-expression should be used whenever the order of appearanceof the arguments
is relevant.

For anand*-condition with n+1 arguments theif-expression saves(n+1) ∗ (n+2) / 2
condition literals andn repetitions of the meta-term of the else-case in the specification:

(macro-rule l
(if ((and* L0 ... Ln))

r0

r1))

written in form of unstructured conditional equations is much longer:

l = r0 ←− L0 ... Ln

l = r1 ←− (not L0)
l = r1 ←− L0 (not L1)
...

...
...

l = r1 ←− L0 ... Ln−1 (not Ln)

For acase-with-else-expression the saving has the complexity of the product of the
squares of the numbers of arguments of theand*-expressions.

We now give a final version of our introducingdelete-specification:

(macro-rule (delete x l)
(case

((@ l nil))
nil

((@ l (cons y k))
(let (delete x k) h))
(if ((= x y))

h
(cons y h))

((not (memberp x l)))
l))

The last case really should be omitted. It is only present to remind the cursory reader that the
cases must be neither complementary nor complete and that their ordering is (in contrast to LISP’s
COND) relevant only for the order of the tests of an optionalelse-case of thecase-expression.

7

All in all, this macro-rule-construct was designed as a tool for the specifier. Besides that, it
is also useful for explicitly structuring an equational specification. This structuring must be done
anyway:

• It reduces the number of matching and condition tests and therefore enhances efficiency of
rewriting.

• More important for us is that it may exhibit the recursive construction of a function and
therefore may help to find suitable structures for inductiveproofs by giving hints for case
distinctions and for the choice of covering sets of substitutions:

For example, the “natural” way of proving inductive properties of the delete-
function is to start with a covering set of substitutions given by “{l 7→nil}” and
“{l7→(cons y k)}”, and then to make a case distinction for the second case on whether
“x=y” holds or not.

8

2 Examples

In this section we give some more examples.

Two specifications of the characteristic function of the member predicate:

(macro-rule (memberp x l)
(case

((@ l nil))
false
((@ l (cons y m)))
(if ((= x y))

true
(memberp x m))))

denotes
memberp x nil = false
memberp x cons y m = true ←− x = y
memberp x cons y m = memberp x m ←− x 6= y

while

(macro-rule (memberp x l)
(case

((@ l nil))
false
((@ l (cons y m)))
(if ((or (= x y) (memberp x m)))

true
false)))

denotes
memberp x nil = false
memberp x cons y m = true ←− x = y
memberp x cons y m = true ←− memberp x m = true
memberp x cons y m = false ←− x 6= y, memberp x m 6= true .

9

Functions on natural numbers:

(macro-rule (p x)
(case

((@ x (s u)))
u))

denotes

p s u = u

which is syntactically more restrictive and operationallymore useful than
(macro-rule (p x)

(case
((= x (s u)))
u))

which denotes

p x = u ←− x = s u .

(macro-rule (max x y)
(case

((@ x 0))
y
((@ y 0))
x
((@ x (s u))
(@ y (s v)))

(s (max u v))))

(macro-rule (+ x y)
(case

((@ x 0))
y
((@ x (s u)))
(s (+ u y))))

(macro-rule (* x y)
(case

((@ x 0))
0
((@ x (s u)))
(+ y (* u y))))

(macro-rule (pot w x) ; computes wx

(case
((@ x 0))
(s 0)
((@ x (s u)))
(* w

(pot w u))))

10

Functions on binary trees:

(macro-rule (hight t)
(case

((@ t nil))
0
((@ t (mk-tree l node r)))
(s (max (hight l)

(hight r)))))

(macro-rule (count-nodes t)
(case

((@ t nil))
0
((@ t (mk-tree l node r)))
(s (+ (count-nodes l)

(count-nodes r)))))

(macro-rule (completep t)
(case

((@ t nil))
true
((@ t (mk-tree r node l)))
(if ((= (hight l) (hight r)); | this is a conjunctive condition

(completep l) ; | list, just like with equational
(completep r)) ; | rules

true
false)))

11

3 Syntax

The syntax of themacro-rule-construct is defined by the following context-free grammar3

with starting symbol<macro-rule>. Note that the sets of variable, constant, and function names
must be mutually disjoint. Furthermore, function names must be different from “case”, and
“if” and should4 also be different from “=”, “ #”, “ def ”, “ @”, “ @@”, “ let”, “ or”, “ or*”,
“and”, “ and*”, and “not”.

<term> := <variable-name>
| <constant-name>
| (<function-name> <term>+)

<(in-)equality-atom> := (= <term> <term>)
| (# <term> <term>)

<predicate-atom> := <term>

<negatible-atom> := <(in-)equality-atom>
| <predicate-atom>

<def-atom> := (def <term>)

<basic-atom> := <negatible-atom>
| <def-atom>

<match-atom> := (@ <variable-name> <term>)
| (@@ <variable-name> <term>)

<let-atom> := (let <term> <variable-name>)

<negatible-condition> := <negatible-atom>
| (and <negatible-condition>*)
| (or <negatible-condition>*)
| (and* <negatible-condition>*)
| (or* <negatible-condition>*)
| (not <negatible-condition>)

3Here, “ ...* ” denotes zero or more repetitions, “ ...+ ” denotes one or more repetitions, “...|...” denotes different
possibilities, “<...>” denotes non-terminals, and typewriter font indicates grammar terminals.

4This is necessary if the function is specified as characteristic function and used in a predicate-atom.

12

<general-condition> := <negatible-condition>
| <basic-atom>
| <match-atom>
| <let-atom>
| (and <general-condition>*)
| (or <general-condition>*)
| (and* <negatible-condition>* <general-condition>)
| (or* <negatible-condition>* <general-condition>)

<negatible-condition-list> := (<negatible-condition>*)

<general-condition-list> := (<general-condition>*)

<negatible-case> := <negatible-condition-list>
<meta-term>

<else> := else
<meta-term>

<case> := <general-condition-list>
<meta-term>

<if-term> := (if <negatible-condition-list>
<meta-term>
<meta-term>)

<case-term-with-else> := (case
<negatible-case>*
<else>)

<case-term> := (case
<case>+)

<meta-term> := <term>
| <if-term>
| <case-term-with-else>
| <case-term>

<macro-rule> := (macro-rule<term> <meta-term>)

13

4 Semantics

The semantics of a sequence ofmacro-rule-expressions is a positive/negative-conditional rule
system.

Let:
VARi ∈ LG(<variable-name>)5

TERMi ∈ LG(<term>)
PRED-ATOMi ∈ LG(<predicate-atom>)
N-Ci ∈ LG(<negatible-condition>)
N-C-LISTi ∈ LG(<negatible-condition-list>)
BASIC-ATOMi ∈ LG(<basic-atom>)
MATCHi ∈ LG(<match-atom>)
LETi ∈ LG(<let-atom>)
GEN-CONDi, G-Ci ∈ LG(<general-condition>)
CASEi ∈ LG(<case>)
META-TERMi ∈ LG(<meta-term>)

The denotation of the following “elementary” macro-rule-expressions is defined as follows:

(macro-rule TERM1 TERM2)

denotes the unconditional rewrite rule

TERM1 = TERM2

and

(macro-rule TERM1

(case
(BASIC-ATOM0 · · · BASIC-ATOMn)
TERM2))

denotes the following rewrite rule with nonempty condition

TERM1 = TERM2 ←− BASIC-ATOM0, . . . , BASIC-ATOMn

A macro-rule-expression is non-erroneous iff it can be transformed intoelementary
macro-rule-expressions with the rewrite rules we will introduce in this section. Note that
the semantics is declarative in so far as no precedence is imposed on the application of these
rules. The resulting rewriting relation is confluent and Noetherian. Since all elementary
macro-rule-expressions are irreducible, eachmacro-rule-expression denotes at most one
positive/negative-conditional rule system.

5LG(<sym>) denotes the set of words generated by productions of our grammar starting from the symbol
<sym>.

14

“Predicate”-Removal

Predicates may be used as conditions. All these predicates are put into equations:

In the context of a general or negatible condition:
PRED-ATOM −→ (= PRED-ATOM true)

“if”-Removal

if-expressions are replaced by “case-with-else”-expressions:

(if N-C-LIST (case
META-TERM1 −→ N-C-LIST
META-TERM2) META-TERM1

else
META-TERM2)

“else”-Removal

As else-statements may cause trouble when replacing “case in case” (cf. below), they must
be eliminated before:

(case
(N-C1,1 · · · N-C1,n1

) META-TERM1

...
...

(N-Cm,1 · · · N-Cm,nm
) META-TERMm

else META-TERMm+1)

↓

(case
(N-C1,1 · · · N-C1,n1

) META-TERM1

...
...

(N-Cm,1 · · · N-Cm,nm
) META-TERMm

((or (not N-C1,1)
. (not N-C1,2)

.
...

. (not N-C1,n1
))

...
(or (not N-Cm,1)

(not N-Cm,2)
...
(not N-Cm,nm

))) META-TERMm+1)

If none of the preceding rewrite rules applies anymore, thenall negatible atoms are (in-)equality
atoms and noif- or else-expressions occur in the specification.

15

“not”-Removal

(not (not N-C)) −→ N-C

(not (and N-C1 · · · N-Cn)) −→ (or (not N-C1) · · · (not N-Cn))

(not (and* N-C1 · · · N-Cn)) −→ (or* (not N-C1) · · · (not N-Cn))

(not (or N-C1 · · · N-Cn)) −→ (and (not N-C1) · · · (not N-Cn))

(not (or* N-C1 · · · N-Cn)) −→ (and* (not N-C1) · · · (not N-Cn))

(not (= TERM1 TERM2)) −→ (# TERM1 TERM2)

(not (# TERM1 TERM2)) −→ (= TERM1 TERM2)

“or”-Removal

(case
CASE1

...
CASEn

(G-C1 · · · G-Cp

(or GEN-COND1 · · · GEN-CONDr)
G-Cp+1 · · · G-Cp+q)

META-TERM
CASEn+1

...
CASEn+m)

↓

(case
CASE1

...
CASEn

(G-C1 · · · G-Cp GEN-COND1 G-Cp+1 · · · G-Cp+q) META-TERM
...

...
(G-C1 · · · G-Cp GEN-CONDr G-Cp+1 · · · G-Cp+q) META-TERM
CASEn+1

...
CASEn+m)

Note that for application of this rule no ‘else’ may occur in thecase-expression.

16

“or*”-Removal

(case
CASE1

...
CASEn

(G-C1 · · · G-Cp

(or* N-C1 · · · N-Cr)
G-Cp+1 · · · G-Cp+q)

META-TERM
CASEn+1

...
CASEn+m)

↓

(case
CASE1

...
CASEn

(G-C1 · · · G-Cp

N-C1

G-Cp+1 · · · G-Cp+q)
META-TERM
(G-C1 · · · G-Cp

(not N-C1) N-C2

G-Cp+1 · · · G-Cp+q)
META-TERM
...
(G-C1 · · · G-Cp

(not N-C1) · · · (not N-Cr−1) N-Cr

G-Cp+1 · · · G-Cp+q)
META-TERM
CASEn+1

...
CASEn+m)

Note that for application of this rule no ‘else’ may occur in thecase-expression.

17

“and[*]”-Removal

(case
CASE1

...
CASEn

(G-C1 · · · G-Cp

(and[*] GEN-COND1 · · · GEN-CONDr)
G-Cp+1 · · · G-Cp+q)

META-TERM
CASEn+1

...
CASEn+m)

−→

(case
CASE1

...
CASEn

(G-C1 · · · G-Cp

GEN-COND1 · · · GEN-CONDr

G-Cp+1 · · · G-Cp+q)
META-TERM
CASEn+1

...
CASEn+m)

Note that for application of this rule no ‘else’ may occur in thecase-expression.

“case-in-case”-Removal

(case
CASE1

...
CASEm

(G-C1 · · · G-Cp)
(case

(GEN-COND1,1 · · · GEN-COND1,q1
) META-TERM1

...
...

(GEN-CONDr,1 · · · GEN-CONDr,qr
) META-TERMr)

CASEm+1

...
CASEm+n)

↓

(case
CASE1

...
CASEm

(G-C1 · · · G-Cp GEN-COND1,1 · · · GEN-COND1,q1
) META-TERM1

...
...

(G-C1 · · · G-Cp GEN-CONDr,1 · · · GEN-CONDr,qr
) META-TERMr

CASEm+1

...
CASEm+n)

Note that for application of this rule no ‘else’ may occur in any of the twocase-expressions.

18

“@”-Removal

As we do not want match-atoms in our final rule-system we replace all occurrences of a match-
variableVAR preceding a match-atom(@ VAR TERM) with the match-termTERM. If the
match-variable does not occur in the match-term, we also have to replace all occurrences of the
match-variable in the scope of the match-atom with the match-term. LetV(TERM) denote the set
of variables occurring inTERM.

If VAR ∈ V(TERM) , then the specifier should be warned like:
“WARNING: (@ VAR TERM) re-bindsVAR”

and we reduce:
(@ VAR TERM) −→ (@@ VAR TERM)

Otherwise we reduce:
(@ VAR TERM) −→ (@@ VAR TERM)

(let TERM VAR)

“@@”-Shift-Left

In case of V(BASIC-ATOM) ∩ (V(TERM)\{VAR}) 6= ∅ the condition list below is erroneous.
Otherwise we reduce:

(G-C1

...
G-Cm

BASIC-ATOM
(@@ VAR TERM)
G-Cm+1

...
G-Cm+n)

−→

(G-C1

...
G-Cm

(@@ VAR TERM)
BASIC-ATOM{VAR 7→TERM}
G-Cm+1

...
G-Cm+n)

“let”-Shift-Right

If VAR ∈ V(TERM) , then the specifier should be warned like:
“WARNING: (let TERM VAR) re-bindsVAR”

The following inference rule is the dual of “@@”-shift-left.

(G-C1

...
G-Cm

(let TERM VAR)
BASIC-ATOM
G-Cm+1

...
G-Cm+n)

−→

(G-C1

...
G-Cm

BASIC-ATOM{VAR 7→TERM}
(let TERM VAR)
G-Cm+1

...
G-Cm+n)

19

“let”-“ @@”-Swap

This is the only non-trivial rewrite rule.

(G-C1

...
G-Cm

(let TERM1 VAR1)
(@@ VAR2 TERM2)
G-Cm+1

...
G-Cm+n)

−→

(G-C1

...
G-Cm

<X>
G-Cm+1

...
G-Cm+n)

with <X> defined as follows:

VAR1 = VAR2: ERROR.
There is no reasonable semantics for this unlessTERM1σ = TERM2ξσ for someξ replac-
ing the variables ofV(TERM1) ∩ V(TERM2) with new distinct variables andσ being a
most general unifier forTERM1 andTERM2ξ.6 This case, however, is too unlikely and not
important enough to give semantics for, since this would make single pass error checking
more difficult.

VAR1 ∈ V(TERM2) \ {VAR2}:
<X> = (@@ VAR2 TERM2)
Thelet-term is removed sinceVAR1 is re-bound by the match-atom. Often, this will not
be the intention of the specifier. Therefore a warning shouldbe given.

VAR1 6∈ {VAR2} ∪ V(TERM2):
<X> = (@@ VAR2 TERM2)

(let TERM1{VAR2 7→TERM2} VAR1)
This should be the normal case.

Note that errors and warnings (case one and two) can be detected easily by one single pass over
the specification before starting the rewriting. This allows error and warning messages to refer
to the originalmacro-rule-constructs, which is necessary for being understandable for the
specifier.

6 <X> = (@@∗
V(TERM1)↿σ) (let∗ (V(TERM2)↿(ξσ))−1) would correspond to our intention. E.g. for

(let (mt l y l) k)
(@@ k (mt h1 (cons y m) h2))
we would chooseξ := { y 7→ z } ; σ := { y 7→ (cons z m) , h1 7→ l , h2 7→ l } and get
<X> = (@@ y (cons z m)) (let l h1) (let l h2) (let z y) .

However, this definition would destroy the confluence of ‘−→’. E.g. consider the following condition-list where
y is an alias foru: ((@ x (s u)) (@ x (s y))) −→
((@@ x (s u)) (let (s u) x) (@@ x (s y)) (let (s y) x)).
The latter condition-list reduces in two ways. First withξ := { }, σ := { u 7→ y } :
−→ ((@@ x (s u)) (@@ u y) (let (s y) x)).
Second withξ := { }, σ := { y 7→ u } :
−→ ((@@ x (s u)) (let u y) (let (s y) x)).
Now the first version reports an error ify occurs to the left while the second does not. Furthermore, the first version
will use the variabley in its scope while the second will useu instead.

20

Splitting

(macro-rule TERM
(case

CASE1

...
CASEn))

−→

(macro-rule TERM
(case CASE1))

...
(macro-rule TERM

(case CASEn))

By application of the inference rules introduced above, allnon-erroneousmacro-rule-expressions
can be transformed into the following form:

(macro-rule TERM1

(case (MATCH1 · · · MATCHm

BASIC-ATOM1 · · · BASIC-ATOMp

LET1 · · · LETn)
TERM2))

or

(macro-rule TERM1 TERM2) .

The transformation into an elementarymacro-rule-expression is attained by the last three
rules.

“@@”-removal

In case of V(TERM1) ∩ (V(TERM2)\{VAR}) 6= ∅ the specification is erroneous.
Otherwise we reduce:

(macro-rule TERM1

(case
((@@ VAR TERM2) G-C1 · · · G-Cm)
META-TERM))

↓

(macro-rule TERM1{VAR 7→TERM2}
(case

(G-C1 · · · G-Cm)
META-TERM))

21

“let”-removal

(case
CASE1

...
CASEm

(G-C1 · · · G-Cm (let TERM1 VAR)) TERM2

CASEm+1

...
CASEm+n)

↓

(case
CASE1

...
CASEm

(G-C1 · · · G-Cm) TERM2{VAR 7→TERM1}
CASEm+1

...
CASEm+n)

“case-with-empty-condition”-Removal

(macro-rule TERM1 (case () TERM2)) −→ (macro-rule TERM1 TERM2)

References

Claus-Peter Wirth, Bernhard Gramlich (1993).A Constructor-Based Approach for
Positive/Negative-Conditional Equational Specifications. 3rd CTRS 1992, LNCS 656,
pp. 198–212, Springer. Revised and extended version in J. Symbolic Computation (1994)17,
pp. 51–90, Academic Press (Elsevier).

	Introduction
	Examples
	Syntax
	Semantics
	References

